ABISysV_mips64.cpp 34.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
//===-- ABISysV_mips64.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "ABISysV_mips64.h"

#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"

#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Value.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectRegister.h"
#include "lldb/Symbol/UnwindPlan.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"

using namespace lldb;
using namespace lldb_private;

enum dwarf_regnums {
  dwarf_r0 = 0,
  dwarf_r1,
  dwarf_r2,
  dwarf_r3,
  dwarf_r4,
  dwarf_r5,
  dwarf_r6,
  dwarf_r7,
  dwarf_r8,
  dwarf_r9,
  dwarf_r10,
  dwarf_r11,
  dwarf_r12,
  dwarf_r13,
  dwarf_r14,
  dwarf_r15,
  dwarf_r16,
  dwarf_r17,
  dwarf_r18,
  dwarf_r19,
  dwarf_r20,
  dwarf_r21,
  dwarf_r22,
  dwarf_r23,
  dwarf_r24,
  dwarf_r25,
  dwarf_r26,
  dwarf_r27,
  dwarf_r28,
  dwarf_r29,
  dwarf_r30,
  dwarf_r31,
  dwarf_sr,
  dwarf_lo,
  dwarf_hi,
  dwarf_bad,
  dwarf_cause,
  dwarf_pc
};

static const RegisterInfo g_register_infos_mips64[] = {
    //  NAME      ALT    SZ OFF ENCODING        FORMAT         EH_FRAME
    //  DWARF                   GENERIC                     PROCESS PLUGIN
    //  LLDB NATIVE
    //  ========  ======  == === =============  ==========     =============
    //  =================       ====================        =================
    //  ====================
    {"r0",
     "zero",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r1",
     "AT",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r1, dwarf_r1, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r2",
     "v0",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r3",
     "v1",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r3, dwarf_r3, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r4",
     "arg1",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG1, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r5",
     "arg2",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG2, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r6",
     "arg3",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG3, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r7",
     "arg4",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG4, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r8",
     "arg5",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG5, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r9",
     "arg6",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG6, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r10",
     "arg7",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG7, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r11",
     "arg8",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r11, dwarf_r11, LLDB_REGNUM_GENERIC_ARG8, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r12",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r13",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r14",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r15",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r16",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r17",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r18",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r19",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r20",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r21",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r22",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r23",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r24",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r25",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r26",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r27",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r28",
     "gp",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r29",
     "sp",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r29, dwarf_r29, LLDB_REGNUM_GENERIC_SP, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r30",
     "fp",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r30, dwarf_r30, LLDB_REGNUM_GENERIC_FP, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"r31",
     "ra",
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_r31, dwarf_r31, LLDB_REGNUM_GENERIC_RA, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"sr",
     nullptr,
     4,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_sr, dwarf_sr, LLDB_REGNUM_GENERIC_FLAGS, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"lo",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_lo, dwarf_lo, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"hi",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_hi, dwarf_hi, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"bad",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_bad, dwarf_bad, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"cause",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_cause, dwarf_cause, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
    {"pc",
     nullptr,
     8,
     0,
     eEncodingUint,
     eFormatHex,
     {dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC, LLDB_INVALID_REGNUM,
      LLDB_INVALID_REGNUM},
     nullptr,
     nullptr,
     nullptr,
     0},
};

static const uint32_t k_num_register_infos =
    llvm::array_lengthof(g_register_infos_mips64);

const lldb_private::RegisterInfo *
ABISysV_mips64::GetRegisterInfoArray(uint32_t &count) {
  count = k_num_register_infos;
  return g_register_infos_mips64;
}

size_t ABISysV_mips64::GetRedZoneSize() const { return 0; }

// Static Functions

ABISP
ABISysV_mips64::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
  if (arch.GetTriple().isMIPS64())
    return ABISP(
        new ABISysV_mips64(std::move(process_sp), MakeMCRegisterInfo(arch)));
  return ABISP();
}

bool ABISysV_mips64::PrepareTrivialCall(Thread &thread, addr_t sp,
                                        addr_t func_addr, addr_t return_addr,
                                        llvm::ArrayRef<addr_t> args) const {
  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));

  if (log) {
    StreamString s;
    s.Printf("ABISysV_mips64::PrepareTrivialCall (tid = 0x%" PRIx64
             ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
             ", return_addr = 0x%" PRIx64,
             thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
             (uint64_t)return_addr);

    for (size_t i = 0; i < args.size(); ++i)
      s.Printf(", arg%zd = 0x%" PRIx64, i + 1, args[i]);
    s.PutCString(")");
    log->PutString(s.GetString());
  }

  RegisterContext *reg_ctx = thread.GetRegisterContext().get();
  if (!reg_ctx)
    return false;

  const RegisterInfo *reg_info = nullptr;

  if (args.size() > 8) // TODO handle more than 8 arguments
    return false;

  for (size_t i = 0; i < args.size(); ++i) {
    reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
                                        LLDB_REGNUM_GENERIC_ARG1 + i);
    LLDB_LOGF(log, "About to write arg%zd (0x%" PRIx64 ") into %s", i + 1,
              args[i], reg_info->name);
    if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
      return false;
  }

  // First, align the SP

  LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
            (uint64_t)sp, (uint64_t)(sp & ~0xfull));

  sp &= ~(0xfull); // 16-byte alignment

  Status error;
  const RegisterInfo *pc_reg_info =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
  const RegisterInfo *sp_reg_info =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
  const RegisterInfo *ra_reg_info =
      reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA);
  const RegisterInfo *r25_info = reg_ctx->GetRegisterInfoByName("r25", 0);
  const RegisterInfo *r0_info = reg_ctx->GetRegisterInfoByName("zero", 0);

  LLDB_LOGF(log, "Writing R0: 0x%" PRIx64, (uint64_t)0);

  /* Write r0 with 0, in case we are stopped in syscall,
   * such setting prevents automatic decrement of the PC.
   * This clears the bug 23659 for MIPS.
  */
  if (!reg_ctx->WriteRegisterFromUnsigned(r0_info, (uint64_t)0))
    return false;

  LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);

  // Set "sp" to the requested value
  if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
    return false;

  LLDB_LOGF(log, "Writing RA: 0x%" PRIx64, (uint64_t)return_addr);

  // Set "ra" to the return address
  if (!reg_ctx->WriteRegisterFromUnsigned(ra_reg_info, return_addr))
    return false;

  LLDB_LOGF(log, "Writing PC: 0x%" PRIx64, (uint64_t)func_addr);

  // Set pc to the address of the called function.
  if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
    return false;

  LLDB_LOGF(log, "Writing r25: 0x%" PRIx64, (uint64_t)func_addr);

  // All callers of position independent functions must place the address of
  // the called function in t9 (r25)
  if (!reg_ctx->WriteRegisterFromUnsigned(r25_info, func_addr))
    return false;

  return true;
}

bool ABISysV_mips64::GetArgumentValues(Thread &thread,
                                       ValueList &values) const {
  return false;
}

Status ABISysV_mips64::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
                                            lldb::ValueObjectSP &new_value_sp) {
  Status error;
  if (!new_value_sp) {
    error.SetErrorString("Empty value object for return value.");
    return error;
  }

  CompilerType compiler_type = new_value_sp->GetCompilerType();
  if (!compiler_type) {
    error.SetErrorString("Null clang type for return value.");
    return error;
  }

  Thread *thread = frame_sp->GetThread().get();

  RegisterContext *reg_ctx = thread->GetRegisterContext().get();

  if (!reg_ctx)
    error.SetErrorString("no registers are available");

  DataExtractor data;
  Status data_error;
  size_t num_bytes = new_value_sp->GetData(data, data_error);
  if (data_error.Fail()) {
    error.SetErrorStringWithFormat(
        "Couldn't convert return value to raw data: %s",
        data_error.AsCString());
    return error;
  }

  const uint32_t type_flags = compiler_type.GetTypeInfo(nullptr);

  if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) {
    if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) {
      lldb::offset_t offset = 0;

      if (num_bytes <= 16) {
        const RegisterInfo *r2_info = reg_ctx->GetRegisterInfoByName("r2", 0);
        if (num_bytes <= 8) {
          uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);

          if (!reg_ctx->WriteRegisterFromUnsigned(r2_info, raw_value))
            error.SetErrorString("failed to write register r2");
        } else {
          uint64_t raw_value = data.GetMaxU64(&offset, 8);
          if (reg_ctx->WriteRegisterFromUnsigned(r2_info, raw_value)) {
            const RegisterInfo *r3_info =
                reg_ctx->GetRegisterInfoByName("r3", 0);
            raw_value = data.GetMaxU64(&offset, num_bytes - offset);

            if (!reg_ctx->WriteRegisterFromUnsigned(r3_info, raw_value))
              error.SetErrorString("failed to write register r3");
          } else
            error.SetErrorString("failed to write register r2");
        }
      } else {
        error.SetErrorString("We don't support returning longer than 128 bit "
                             "integer values at present.");
      }
    } else if (type_flags & eTypeIsFloat) {
      error.SetErrorString("TODO: Handle Float Types.");
    }
  } else if (type_flags & eTypeIsVector) {
    error.SetErrorString("returning vector values are not supported");
  }

  return error;
}

ValueObjectSP ABISysV_mips64::GetReturnValueObjectSimple(
    Thread &thread, CompilerType &return_compiler_type) const {
  ValueObjectSP return_valobj_sp;
  return return_valobj_sp;
}

ValueObjectSP ABISysV_mips64::GetReturnValueObjectImpl(
    Thread &thread, CompilerType &return_compiler_type) const {
  ValueObjectSP return_valobj_sp;
  Value value;
  Status error;

  ExecutionContext exe_ctx(thread.shared_from_this());
  if (exe_ctx.GetTargetPtr() == nullptr || exe_ctx.GetProcessPtr() == nullptr)
    return return_valobj_sp;

  value.SetCompilerType(return_compiler_type);

  RegisterContext *reg_ctx = thread.GetRegisterContext().get();
  if (!reg_ctx)
    return return_valobj_sp;

  Target *target = exe_ctx.GetTargetPtr();
  const ArchSpec target_arch = target->GetArchitecture();
  ByteOrder target_byte_order = target_arch.GetByteOrder();
  llvm::Optional<uint64_t> byte_size =
      return_compiler_type.GetByteSize(nullptr);
  if (!byte_size)
    return return_valobj_sp;
  const uint32_t type_flags = return_compiler_type.GetTypeInfo(nullptr);
  uint32_t fp_flag =
      target_arch.GetFlags() & lldb_private::ArchSpec::eMIPS_ABI_FP_mask;

  const RegisterInfo *r2_info = reg_ctx->GetRegisterInfoByName("r2", 0);
  const RegisterInfo *r3_info = reg_ctx->GetRegisterInfoByName("r3", 0);

  if (type_flags & eTypeIsScalar || type_flags & eTypeIsPointer) {
    value.SetValueType(Value::eValueTypeScalar);

    bool success = false;
    if (type_flags & eTypeIsInteger || type_flags & eTypeIsPointer) {
      // Extract the register context so we can read arguments from registers
      // In MIPS register "r2" (v0) holds the integer function return values

      uint64_t raw_value = reg_ctx->ReadRegisterAsUnsigned(r2_info, 0);

      const bool is_signed = (type_flags & eTypeIsSigned) != 0;
      switch (*byte_size) {
      default:
        break;

      case sizeof(uint64_t):
        if (is_signed)
          value.GetScalar() = (int64_t)(raw_value);
        else
          value.GetScalar() = (uint64_t)(raw_value);
        success = true;
        break;

      case sizeof(uint32_t):
        if (is_signed)
          value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
        else
          value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
        success = true;
        break;

      case sizeof(uint16_t):
        if (is_signed)
          value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
        else
          value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
        success = true;
        break;

      case sizeof(uint8_t):
        if (is_signed)
          value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
        else
          value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
        success = true;
        break;
      }
    } else if (type_flags & eTypeIsFloat) {
      if (type_flags & eTypeIsComplex) {
        // Don't handle complex yet.
      } else if (IsSoftFloat(fp_flag)) {
        uint64_t raw_value = reg_ctx->ReadRegisterAsUnsigned(r2_info, 0);
        switch (*byte_size) {
        case 4:
          value.GetScalar() = *((float *)(&raw_value));
          success = true;
          break;
        case 8:
          value.GetScalar() = *((double *)(&raw_value));
          success = true;
          break;
        case 16:
          uint64_t result[2];
          if (target_byte_order == eByteOrderLittle) {
            result[0] = raw_value;
            result[1] = reg_ctx->ReadRegisterAsUnsigned(r3_info, 0);
            value.GetScalar() = *((long double *)(result));
          } else {
            result[0] = reg_ctx->ReadRegisterAsUnsigned(r3_info, 0);
            result[1] = raw_value;
            value.GetScalar() = *((long double *)(result));
          }
          success = true;
          break;
        }

      } else {
        if (*byte_size <= sizeof(long double)) {
          const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0);

          RegisterValue f0_value;
          DataExtractor f0_data;

          reg_ctx->ReadRegister(f0_info, f0_value);

          f0_value.GetData(f0_data);

          lldb::offset_t offset = 0;
          if (*byte_size == sizeof(float)) {
            value.GetScalar() = (float)f0_data.GetFloat(&offset);
            success = true;
          } else if (*byte_size == sizeof(double)) {
            value.GetScalar() = (double)f0_data.GetDouble(&offset);
            success = true;
          } else if (*byte_size == sizeof(long double)) {
            const RegisterInfo *f2_info =
                reg_ctx->GetRegisterInfoByName("f2", 0);
            RegisterValue f2_value;
            DataExtractor f2_data;
            reg_ctx->ReadRegister(f2_info, f2_value);
            DataExtractor *copy_from_extractor = nullptr;
            DataBufferSP data_sp(new DataBufferHeap(16, 0));
            DataExtractor return_ext(
                data_sp, target_byte_order,
                target->GetArchitecture().GetAddressByteSize());

            if (target_byte_order == eByteOrderLittle) {
              copy_from_extractor = &f0_data;
              copy_from_extractor->CopyByteOrderedData(
                  0, 8, data_sp->GetBytes(), *byte_size - 8, target_byte_order);
              f2_value.GetData(f2_data);
              copy_from_extractor = &f2_data;
              copy_from_extractor->CopyByteOrderedData(
                  0, 8, data_sp->GetBytes() + 8, *byte_size - 8,
                  target_byte_order);
            } else {
              copy_from_extractor = &f0_data;
              copy_from_extractor->CopyByteOrderedData(
                  0, 8, data_sp->GetBytes() + 8, *byte_size - 8,
                  target_byte_order);
              f2_value.GetData(f2_data);
              copy_from_extractor = &f2_data;
              copy_from_extractor->CopyByteOrderedData(
                  0, 8, data_sp->GetBytes(), *byte_size - 8, target_byte_order);
            }

            return_valobj_sp = ValueObjectConstResult::Create(
                &thread, return_compiler_type, ConstString(""), return_ext);
            return return_valobj_sp;
          }
        }
      }
    }

    if (success)
      return_valobj_sp = ValueObjectConstResult::Create(
          thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
  } else if (type_flags & eTypeIsStructUnion || type_flags & eTypeIsClass ||
             type_flags & eTypeIsVector) {
    // Any structure of up to 16 bytes in size is returned in the registers.
    if (*byte_size <= 16) {
      DataBufferSP data_sp(new DataBufferHeap(16, 0));
      DataExtractor return_ext(data_sp, target_byte_order,
                               target->GetArchitecture().GetAddressByteSize());

      RegisterValue r2_value, r3_value, f0_value, f1_value, f2_value;
      // Tracks how much bytes of r2 and r3 registers we've consumed so far
      uint32_t integer_bytes = 0;

      // True if return values are in FP return registers.
      bool use_fp_regs = false;
      // True if we found any non floating point field in structure.
      bool found_non_fp_field = false;
      // True if return values are in r2 register.
      bool use_r2 = false;
      // True if return values are in r3 register.
      bool use_r3 = false;
      // True if the result is copied into our data buffer
      bool sucess = false;
      std::string name;
      bool is_complex;
      uint32_t count;
      const uint32_t num_children = return_compiler_type.GetNumFields();

      // A structure consisting of one or two FP values (and nothing else) will
      // be returned in the two FP return-value registers i.e fp0 and fp2.
      if (num_children <= 2) {
        uint64_t field_bit_offset = 0;

        // Check if this structure contains only floating point fields
        for (uint32_t idx = 0; idx < num_children; idx++) {
          CompilerType field_compiler_type =
              return_compiler_type.GetFieldAtIndex(idx, name, &field_bit_offset,
                                                   nullptr, nullptr);

          if (field_compiler_type.IsFloatingPointType(count, is_complex))
            use_fp_regs = true;
          else
            found_non_fp_field = true;
        }

        if (use_fp_regs && !found_non_fp_field) {
          // We have one or two FP-only values in this structure. Get it from
          // f0/f2 registers.
          DataExtractor f0_data, f1_data, f2_data;
          const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0);
          const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
          const RegisterInfo *f2_info = reg_ctx->GetRegisterInfoByName("f2", 0);

          reg_ctx->ReadRegister(f0_info, f0_value);
          reg_ctx->ReadRegister(f2_info, f2_value);

          f0_value.GetData(f0_data);

          for (uint32_t idx = 0; idx < num_children; idx++) {
            CompilerType field_compiler_type =
                return_compiler_type.GetFieldAtIndex(
                    idx, name, &field_bit_offset, nullptr, nullptr);
            llvm::Optional<uint64_t> field_byte_width =
                field_compiler_type.GetByteSize(nullptr);
            if (!field_byte_width)
              return return_valobj_sp;

            DataExtractor *copy_from_extractor = nullptr;
            uint64_t return_value[2];
            offset_t offset = 0;

            if (idx == 0) {
              // This case is for long double type.
              if (*field_byte_width == 16) {

                // If structure contains long double type, then it is returned
                // in fp0/fp1 registers.
                if (target_byte_order == eByteOrderLittle) {
                  return_value[0] = f0_data.GetU64(&offset);
                  reg_ctx->ReadRegister(f1_info, f1_value);
                  f1_value.GetData(f1_data);
                  offset = 0;
                  return_value[1] = f1_data.GetU64(&offset);
                } else {
                  return_value[1] = f0_data.GetU64(&offset);
                  reg_ctx->ReadRegister(f1_info, f1_value);
                  f1_value.GetData(f1_data);
                  offset = 0;
                  return_value[0] = f1_data.GetU64(&offset);
                }

                f0_data.SetData(return_value, *field_byte_width,
                                target_byte_order);
              }
              copy_from_extractor = &f0_data; // This is in f0, copy from
                                              // register to our result
                                              // structure
            } else {
              f2_value.GetData(f2_data);
              // This is in f2, copy from register to our result structure
              copy_from_extractor = &f2_data;
            }

            // Sanity check to avoid crash
            if (!copy_from_extractor ||
                *field_byte_width > copy_from_extractor->GetByteSize())
              return return_valobj_sp;

            // copy the register contents into our data buffer
            copy_from_extractor->CopyByteOrderedData(
                0, *field_byte_width,
                data_sp->GetBytes() + (field_bit_offset / 8), *field_byte_width,
                target_byte_order);
          }

          // The result is in our data buffer.  Create a variable object out of
          // it
          return_valobj_sp = ValueObjectConstResult::Create(
              &thread, return_compiler_type, ConstString(""), return_ext);

          return return_valobj_sp;
        }
      }

      // If we reach here, it means this structure either contains more than
      // two fields or it contains at least one non floating point type. In
      // that case, all fields are returned in GP return registers.
      for (uint32_t idx = 0; idx < num_children; idx++) {
        uint64_t field_bit_offset = 0;
        bool is_signed;
        uint32_t padding;

        CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
            idx, name, &field_bit_offset, nullptr, nullptr);
        llvm::Optional<uint64_t> field_byte_width =
            field_compiler_type.GetByteSize(nullptr);

        // if we don't know the size of the field (e.g. invalid type), just
        // bail out
        if (!field_byte_width || *field_byte_width == 0)
          break;

        uint32_t field_byte_offset = field_bit_offset / 8;

        if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
            field_compiler_type.IsPointerType() ||
            field_compiler_type.IsFloatingPointType(count, is_complex)) {
          padding = field_byte_offset - integer_bytes;

          if (integer_bytes < 8) {
            // We have not yet consumed r2 completely.
            if (integer_bytes + *field_byte_width + padding <= 8) {
              // This field fits in r2, copy its value from r2 to our result
              // structure
              integer_bytes = integer_bytes + *field_byte_width +
                              padding; // Increase the consumed bytes.
              use_r2 = true;
            } else {
              // There isn't enough space left in r2 for this field, so this
              // will be in r3.
              integer_bytes = integer_bytes + *field_byte_width +
                              padding; // Increase the consumed bytes.
              use_r3 = true;
            }
          }
          // We already have consumed at-least 8 bytes that means r2 is done,
          // and this field will be in r3. Check if this field can fit in r3.
          else if (integer_bytes + *field_byte_width + padding <= 16) {
            integer_bytes = integer_bytes + *field_byte_width + padding;
            use_r3 = true;
          } else {
            // There isn't any space left for this field, this should not
            // happen as we have already checked the overall size is not
            // greater than 16 bytes. For now, return a nullptr return value
            // object.
            return return_valobj_sp;
          }
        }
      }
      // Vector types up to 16 bytes are returned in GP return registers
      if (type_flags & eTypeIsVector) {
        if (*byte_size <= 8)
          use_r2 = true;
        else {
          use_r2 = true;
          use_r3 = true;
        }
      }

      if (use_r2) {
        reg_ctx->ReadRegister(r2_info, r2_value);

        const size_t bytes_copied = r2_value.GetAsMemoryData(
            r2_info, data_sp->GetBytes(), r2_info->byte_size, target_byte_order,
            error);
        if (bytes_copied != r2_info->byte_size)
          return return_valobj_sp;
        sucess = true;
      }
      if (use_r3) {
        reg_ctx->ReadRegister(r3_info, r3_value);
        const size_t bytes_copied = r3_value.GetAsMemoryData(
            r3_info, data_sp->GetBytes() + r2_info->byte_size,
            r3_info->byte_size, target_byte_order, error);

        if (bytes_copied != r3_info->byte_size)
          return return_valobj_sp;
        sucess = true;
      }
      if (sucess) {
        // The result is in our data buffer.  Create a variable object out of
        // it
        return_valobj_sp = ValueObjectConstResult::Create(
            &thread, return_compiler_type, ConstString(""), return_ext);
      }
      return return_valobj_sp;
    }

    // Any structure/vector greater than 16 bytes in size is returned in
    // memory. The pointer to that memory is returned in r2.
    uint64_t mem_address = reg_ctx->ReadRegisterAsUnsigned(
        reg_ctx->GetRegisterInfoByName("r2", 0), 0);

    // We have got the address. Create a memory object out of it
    return_valobj_sp = ValueObjectMemory::Create(
        &thread, "", Address(mem_address, nullptr), return_compiler_type);
  }
  return return_valobj_sp;
}

bool ABISysV_mips64::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindDWARF);

  UnwindPlan::RowSP row(new UnwindPlan::Row);

  // Our Call Frame Address is the stack pointer value
  row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_r29, 0);

  // The previous PC is in the RA
  row->SetRegisterLocationToRegister(dwarf_pc, dwarf_r31, true);
  unwind_plan.AppendRow(row);

  // All other registers are the same.

  unwind_plan.SetSourceName("mips64 at-func-entry default");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  unwind_plan.SetReturnAddressRegister(dwarf_r31);
  return true;
}

bool ABISysV_mips64::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindDWARF);

  UnwindPlan::RowSP row(new UnwindPlan::Row);

  row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_r29, 0);

  row->SetRegisterLocationToRegister(dwarf_pc, dwarf_r31, true);

  unwind_plan.AppendRow(row);
  unwind_plan.SetSourceName("mips64 default unwind plan");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
  unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
  return true;
}

bool ABISysV_mips64::RegisterIsVolatile(const RegisterInfo *reg_info) {
  return !RegisterIsCalleeSaved(reg_info);
}

bool ABISysV_mips64::IsSoftFloat(uint32_t fp_flag) const {
  return (fp_flag == lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT);
}

bool ABISysV_mips64::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
  if (reg_info) {
    // Preserved registers are :
    // r16-r23, r28, r29, r30, r31

    int reg = ((reg_info->byte_offset) / 8);

    bool save = (reg >= 16) && (reg <= 23);
    save |= (reg >= 28) && (reg <= 31);

    return save;
  }
  return false;
}

void ABISysV_mips64::Initialize() {
  PluginManager::RegisterPlugin(
      GetPluginNameStatic(), "System V ABI for mips64 targets", CreateInstance);
}

void ABISysV_mips64::Terminate() {
  PluginManager::UnregisterPlugin(CreateInstance);
}

lldb_private::ConstString ABISysV_mips64::GetPluginNameStatic() {
  static ConstString g_name("sysv-mips64");
  return g_name;
}

// PluginInterface protocol

lldb_private::ConstString ABISysV_mips64::GetPluginName() {
  return GetPluginNameStatic();
}

uint32_t ABISysV_mips64::GetPluginVersion() { return 1; }