BottleneckAnalysis.cpp
22.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
//===--------------------- BottleneckAnalysis.cpp ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements the functionalities used by the BottleneckAnalysis
/// to report bottleneck info.
///
//===----------------------------------------------------------------------===//
#include "Views/BottleneckAnalysis.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MCA/Support.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormattedStream.h"
namespace llvm {
namespace mca {
#define DEBUG_TYPE "llvm-mca"
PressureTracker::PressureTracker(const MCSchedModel &Model)
: SM(Model),
ResourcePressureDistribution(Model.getNumProcResourceKinds(), 0),
ProcResID2Mask(Model.getNumProcResourceKinds(), 0),
ResIdx2ProcResID(Model.getNumProcResourceKinds(), 0),
ProcResID2ResourceUsersIndex(Model.getNumProcResourceKinds(), 0) {
computeProcResourceMasks(SM, ProcResID2Mask);
// Ignore the invalid resource at index zero.
unsigned NextResourceUsersIdx = 0;
for (unsigned I = 1, E = Model.getNumProcResourceKinds(); I < E; ++I) {
const MCProcResourceDesc &ProcResource = *SM.getProcResource(I);
ProcResID2ResourceUsersIndex[I] = NextResourceUsersIdx;
NextResourceUsersIdx += ProcResource.NumUnits;
uint64_t ResourceMask = ProcResID2Mask[I];
ResIdx2ProcResID[getResourceStateIndex(ResourceMask)] = I;
}
ResourceUsers.resize(NextResourceUsersIdx);
std::fill(ResourceUsers.begin(), ResourceUsers.end(),
std::make_pair<unsigned, unsigned>(~0U, 0U));
}
void PressureTracker::getResourceUsers(uint64_t ResourceMask,
SmallVectorImpl<User> &Users) const {
unsigned Index = getResourceStateIndex(ResourceMask);
unsigned ProcResID = ResIdx2ProcResID[Index];
const MCProcResourceDesc &PRDesc = *SM.getProcResource(ProcResID);
for (unsigned I = 0, E = PRDesc.NumUnits; I < E; ++I) {
const User U = getResourceUser(ProcResID, I);
if (U.second && IPI.find(U.first) != IPI.end())
Users.emplace_back(U);
}
}
void PressureTracker::onInstructionDispatched(unsigned IID) {
IPI.insert(std::make_pair(IID, InstructionPressureInfo()));
}
void PressureTracker::onInstructionExecuted(unsigned IID) { IPI.erase(IID); }
void PressureTracker::handleInstructionIssuedEvent(
const HWInstructionIssuedEvent &Event) {
unsigned IID = Event.IR.getSourceIndex();
using ResourceRef = HWInstructionIssuedEvent::ResourceRef;
using ResourceUse = std::pair<ResourceRef, ResourceCycles>;
for (const ResourceUse &Use : Event.UsedResources) {
const ResourceRef &RR = Use.first;
unsigned Index = ProcResID2ResourceUsersIndex[RR.first];
Index += countTrailingZeros(RR.second);
ResourceUsers[Index] = std::make_pair(IID, Use.second.getNumerator());
}
}
void PressureTracker::updateResourcePressureDistribution(
uint64_t CumulativeMask) {
while (CumulativeMask) {
uint64_t Current = CumulativeMask & (-CumulativeMask);
unsigned ResIdx = getResourceStateIndex(Current);
unsigned ProcResID = ResIdx2ProcResID[ResIdx];
uint64_t Mask = ProcResID2Mask[ProcResID];
if (Mask == Current) {
ResourcePressureDistribution[ProcResID]++;
CumulativeMask ^= Current;
continue;
}
Mask ^= Current;
while (Mask) {
uint64_t SubUnit = Mask & (-Mask);
ResIdx = getResourceStateIndex(SubUnit);
ProcResID = ResIdx2ProcResID[ResIdx];
ResourcePressureDistribution[ProcResID]++;
Mask ^= SubUnit;
}
CumulativeMask ^= Current;
}
}
void PressureTracker::handlePressureEvent(const HWPressureEvent &Event) {
assert(Event.Reason != HWPressureEvent::INVALID &&
"Unexpected invalid event!");
switch (Event.Reason) {
default:
break;
case HWPressureEvent::RESOURCES: {
const uint64_t ResourceMask = Event.ResourceMask;
updateResourcePressureDistribution(Event.ResourceMask);
for (const InstRef &IR : Event.AffectedInstructions) {
const Instruction &IS = *IR.getInstruction();
unsigned BusyResources = IS.getCriticalResourceMask() & ResourceMask;
if (!BusyResources)
continue;
unsigned IID = IR.getSourceIndex();
IPI[IID].ResourcePressureCycles++;
}
break;
}
case HWPressureEvent::REGISTER_DEPS:
for (const InstRef &IR : Event.AffectedInstructions) {
unsigned IID = IR.getSourceIndex();
IPI[IID].RegisterPressureCycles++;
}
break;
case HWPressureEvent::MEMORY_DEPS:
for (const InstRef &IR : Event.AffectedInstructions) {
unsigned IID = IR.getSourceIndex();
IPI[IID].MemoryPressureCycles++;
}
}
}
#ifndef NDEBUG
void DependencyGraph::dumpDependencyEdge(raw_ostream &OS,
const DependencyEdge &DepEdge,
MCInstPrinter &MCIP) const {
unsigned FromIID = DepEdge.FromIID;
unsigned ToIID = DepEdge.ToIID;
assert(FromIID < ToIID && "Graph should be acyclic!");
const DependencyEdge::Dependency &DE = DepEdge.Dep;
assert(DE.Type != DependencyEdge::DT_INVALID && "Unexpected invalid edge!");
OS << " FROM: " << FromIID << " TO: " << ToIID << " ";
if (DE.Type == DependencyEdge::DT_REGISTER) {
OS << " - REGISTER: ";
MCIP.printRegName(OS, DE.ResourceOrRegID);
} else if (DE.Type == DependencyEdge::DT_MEMORY) {
OS << " - MEMORY";
} else {
assert(DE.Type == DependencyEdge::DT_RESOURCE &&
"Unsupported dependency type!");
OS << " - RESOURCE MASK: " << DE.ResourceOrRegID;
}
OS << " - COST: " << DE.Cost << '\n';
}
#endif // NDEBUG
void DependencyGraph::pruneEdges(unsigned Iterations) {
for (DGNode &N : Nodes) {
unsigned NumPruned = 0;
const unsigned Size = N.OutgoingEdges.size();
// Use a cut-off threshold to prune edges with a low frequency.
for (unsigned I = 0, E = Size; I < E; ++I) {
DependencyEdge &Edge = N.OutgoingEdges[I];
if (Edge.Frequency == Iterations)
continue;
double Factor = (double)Edge.Frequency / Iterations;
if (0.10 < Factor)
continue;
Nodes[Edge.ToIID].NumPredecessors--;
std::swap(Edge, N.OutgoingEdges[E - 1]);
--E;
++NumPruned;
}
if (NumPruned)
N.OutgoingEdges.resize(Size - NumPruned);
}
}
void DependencyGraph::initializeRootSet(
SmallVectorImpl<unsigned> &RootSet) const {
for (unsigned I = 0, E = Nodes.size(); I < E; ++I) {
const DGNode &N = Nodes[I];
if (N.NumPredecessors == 0 && !N.OutgoingEdges.empty())
RootSet.emplace_back(I);
}
}
void DependencyGraph::propagateThroughEdges(
SmallVectorImpl<unsigned> &RootSet, unsigned Iterations) {
SmallVector<unsigned, 8> ToVisit;
// A critical sequence is computed as the longest path from a node of the
// RootSet to a leaf node (i.e. a node with no successors). The RootSet is
// composed of nodes with at least one successor, and no predecessors.
//
// Each node of the graph starts with an initial default cost of zero. The
// cost of a node is a measure of criticality: the higher the cost, the bigger
// is the performance impact.
// For register and memory dependencies, the cost is a function of the write
// latency as well as the actual delay (in cycles) caused to users.
// For processor resource dependencies, the cost is a function of the resource
// pressure. Resource interferences with low frequency values are ignored.
//
// This algorithm is very similar to a (reverse) Dijkstra. Every iteration of
// the inner loop selects (i.e. visits) a node N from a set of `unvisited
// nodes`, and then propagates the cost of N to all its neighbors.
//
// The `unvisited nodes` set initially contains all the nodes from the
// RootSet. A node N is added to the `unvisited nodes` if all its
// predecessors have been visited already.
//
// For simplicity, every node tracks the number of unvisited incoming edges in
// field `NumVisitedPredecessors`. When the value of that field drops to
// zero, then the corresponding node is added to a `ToVisit` set.
//
// At the end of every iteration of the outer loop, set `ToVisit` becomes our
// new `unvisited nodes` set.
//
// The algorithm terminates when the set of unvisited nodes (i.e. our RootSet)
// is empty. This algorithm works under the assumption that the graph is
// acyclic.
do {
for (unsigned IID : RootSet) {
const DGNode &N = Nodes[IID];
for (const DependencyEdge &DepEdge : N.OutgoingEdges) {
unsigned ToIID = DepEdge.ToIID;
DGNode &To = Nodes[ToIID];
uint64_t Cost = N.Cost + DepEdge.Dep.Cost;
// Check if this is the most expensive incoming edge seen so far. In
// case, update the total cost of the destination node (ToIID), as well
// its field `CriticalPredecessor`.
if (Cost > To.Cost) {
To.CriticalPredecessor = DepEdge;
To.Cost = Cost;
To.Depth = N.Depth + 1;
}
To.NumVisitedPredecessors++;
if (To.NumVisitedPredecessors == To.NumPredecessors)
ToVisit.emplace_back(ToIID);
}
}
std::swap(RootSet, ToVisit);
ToVisit.clear();
} while (!RootSet.empty());
}
void DependencyGraph::getCriticalSequence(
SmallVectorImpl<const DependencyEdge *> &Seq) const {
// At this stage, nodes of the graph have been already visited, and costs have
// been propagated through the edges (see method `propagateThroughEdges()`).
// Identify the node N with the highest cost in the graph. By construction,
// that node is the last instruction of our critical sequence.
// Field N.Depth would tell us the total length of the sequence.
//
// To obtain the sequence of critical edges, we simply follow the chain of critical
// predecessors starting from node N (field DGNode::CriticalPredecessor).
const auto It = std::max_element(
Nodes.begin(), Nodes.end(),
[](const DGNode &Lhs, const DGNode &Rhs) { return Lhs.Cost < Rhs.Cost; });
unsigned IID = std::distance(Nodes.begin(), It);
Seq.resize(Nodes[IID].Depth);
for (unsigned I = Seq.size(), E = 0; I > E; --I) {
const DGNode &N = Nodes[IID];
Seq[I - 1] = &N.CriticalPredecessor;
IID = N.CriticalPredecessor.FromIID;
}
}
static void printInstruction(formatted_raw_ostream &FOS,
const MCSubtargetInfo &STI, MCInstPrinter &MCIP,
const MCInst &MCI,
bool UseDifferentColor = false) {
std::string Instruction;
raw_string_ostream InstrStream(Instruction);
FOS.PadToColumn(14);
MCIP.printInst(&MCI, 0, "", STI, InstrStream);
InstrStream.flush();
if (UseDifferentColor)
FOS.changeColor(raw_ostream::CYAN, true, false);
FOS << StringRef(Instruction).ltrim();
if (UseDifferentColor)
FOS.resetColor();
}
void BottleneckAnalysis::printCriticalSequence(raw_ostream &OS) const {
// Early exit if no bottlenecks were found during the simulation.
if (!SeenStallCycles || !BPI.PressureIncreaseCycles)
return;
SmallVector<const DependencyEdge *, 16> Seq;
DG.getCriticalSequence(Seq);
if (Seq.empty())
return;
OS << "\nCritical sequence based on the simulation:\n\n";
const DependencyEdge &FirstEdge = *Seq[0];
unsigned FromIID = FirstEdge.FromIID % Source.size();
unsigned ToIID = FirstEdge.ToIID % Source.size();
bool IsLoopCarried = FromIID >= ToIID;
formatted_raw_ostream FOS(OS);
FOS.PadToColumn(14);
FOS << "Instruction";
FOS.PadToColumn(58);
FOS << "Dependency Information";
bool HasColors = FOS.has_colors();
unsigned CurrentIID = 0;
if (IsLoopCarried) {
FOS << "\n +----< " << FromIID << ".";
printInstruction(FOS, STI, MCIP, Source[FromIID], HasColors);
FOS << "\n |\n | < loop carried > \n |";
} else {
while (CurrentIID < FromIID) {
FOS << "\n " << CurrentIID << ".";
printInstruction(FOS, STI, MCIP, Source[CurrentIID]);
CurrentIID++;
}
FOS << "\n +----< " << CurrentIID << ".";
printInstruction(FOS, STI, MCIP, Source[CurrentIID], HasColors);
CurrentIID++;
}
for (const DependencyEdge *&DE : Seq) {
ToIID = DE->ToIID % Source.size();
unsigned LastIID = CurrentIID > ToIID ? Source.size() : ToIID;
while (CurrentIID < LastIID) {
FOS << "\n | " << CurrentIID << ".";
printInstruction(FOS, STI, MCIP, Source[CurrentIID]);
CurrentIID++;
}
if (CurrentIID == ToIID) {
FOS << "\n +----> " << ToIID << ".";
printInstruction(FOS, STI, MCIP, Source[CurrentIID], HasColors);
} else {
FOS << "\n |\n | < loop carried > \n |"
<< "\n +----> " << ToIID << ".";
printInstruction(FOS, STI, MCIP, Source[ToIID], HasColors);
}
FOS.PadToColumn(58);
const DependencyEdge::Dependency &Dep = DE->Dep;
if (HasColors)
FOS.changeColor(raw_ostream::SAVEDCOLOR, true, false);
if (Dep.Type == DependencyEdge::DT_REGISTER) {
FOS << "## REGISTER dependency: ";
if (HasColors)
FOS.changeColor(raw_ostream::MAGENTA, true, false);
MCIP.printRegName(FOS, Dep.ResourceOrRegID);
} else if (Dep.Type == DependencyEdge::DT_MEMORY) {
FOS << "## MEMORY dependency.";
} else {
assert(Dep.Type == DependencyEdge::DT_RESOURCE &&
"Unsupported dependency type!");
FOS << "## RESOURCE interference: ";
if (HasColors)
FOS.changeColor(raw_ostream::MAGENTA, true, false);
FOS << Tracker.resolveResourceName(Dep.ResourceOrRegID);
if (HasColors) {
FOS.resetColor();
FOS.changeColor(raw_ostream::SAVEDCOLOR, true, false);
}
FOS << " [ probability: " << ((DE->Frequency * 100) / Iterations)
<< "% ]";
}
if (HasColors)
FOS.resetColor();
++CurrentIID;
}
while (CurrentIID < Source.size()) {
FOS << "\n " << CurrentIID << ".";
printInstruction(FOS, STI, MCIP, Source[CurrentIID]);
CurrentIID++;
}
FOS << '\n';
FOS.flush();
}
#ifndef NDEBUG
void DependencyGraph::dump(raw_ostream &OS, MCInstPrinter &MCIP) const {
OS << "\nREG DEPS\n";
for (const DGNode &Node : Nodes)
for (const DependencyEdge &DE : Node.OutgoingEdges)
if (DE.Dep.Type == DependencyEdge::DT_REGISTER)
dumpDependencyEdge(OS, DE, MCIP);
OS << "\nMEM DEPS\n";
for (const DGNode &Node : Nodes)
for (const DependencyEdge &DE : Node.OutgoingEdges)
if (DE.Dep.Type == DependencyEdge::DT_MEMORY)
dumpDependencyEdge(OS, DE, MCIP);
OS << "\nRESOURCE DEPS\n";
for (const DGNode &Node : Nodes)
for (const DependencyEdge &DE : Node.OutgoingEdges)
if (DE.Dep.Type == DependencyEdge::DT_RESOURCE)
dumpDependencyEdge(OS, DE, MCIP);
}
#endif // NDEBUG
void DependencyGraph::addDependency(unsigned From, unsigned To,
DependencyEdge::Dependency &&Dep) {
DGNode &NodeFrom = Nodes[From];
DGNode &NodeTo = Nodes[To];
SmallVectorImpl<DependencyEdge> &Vec = NodeFrom.OutgoingEdges;
auto It = find_if(Vec, [To, Dep](DependencyEdge &DE) {
return DE.ToIID == To && DE.Dep.ResourceOrRegID == Dep.ResourceOrRegID;
});
if (It != Vec.end()) {
It->Dep.Cost += Dep.Cost;
It->Frequency++;
return;
}
DependencyEdge DE = {Dep, From, To, 1};
Vec.emplace_back(DE);
NodeTo.NumPredecessors++;
}
BottleneckAnalysis::BottleneckAnalysis(const MCSubtargetInfo &sti,
MCInstPrinter &Printer,
ArrayRef<MCInst> S, unsigned NumIter)
: STI(sti), MCIP(Printer), Tracker(STI.getSchedModel()), DG(S.size() * 3),
Source(S), Iterations(NumIter), TotalCycles(0),
PressureIncreasedBecauseOfResources(false),
PressureIncreasedBecauseOfRegisterDependencies(false),
PressureIncreasedBecauseOfMemoryDependencies(false),
SeenStallCycles(false), BPI() {}
void BottleneckAnalysis::addRegisterDep(unsigned From, unsigned To,
unsigned RegID, unsigned Cost) {
bool IsLoopCarried = From >= To;
unsigned SourceSize = Source.size();
if (IsLoopCarried) {
DG.addRegisterDep(From, To + SourceSize, RegID, Cost);
DG.addRegisterDep(From + SourceSize, To + (SourceSize * 2), RegID, Cost);
return;
}
DG.addRegisterDep(From + SourceSize, To + SourceSize, RegID, Cost);
}
void BottleneckAnalysis::addMemoryDep(unsigned From, unsigned To,
unsigned Cost) {
bool IsLoopCarried = From >= To;
unsigned SourceSize = Source.size();
if (IsLoopCarried) {
DG.addMemoryDep(From, To + SourceSize, Cost);
DG.addMemoryDep(From + SourceSize, To + (SourceSize * 2), Cost);
return;
}
DG.addMemoryDep(From + SourceSize, To + SourceSize, Cost);
}
void BottleneckAnalysis::addResourceDep(unsigned From, unsigned To,
uint64_t Mask, unsigned Cost) {
bool IsLoopCarried = From >= To;
unsigned SourceSize = Source.size();
if (IsLoopCarried) {
DG.addResourceDep(From, To + SourceSize, Mask, Cost);
DG.addResourceDep(From + SourceSize, To + (SourceSize * 2), Mask, Cost);
return;
}
DG.addResourceDep(From + SourceSize, To + SourceSize, Mask, Cost);
}
void BottleneckAnalysis::onEvent(const HWInstructionEvent &Event) {
const unsigned IID = Event.IR.getSourceIndex();
if (Event.Type == HWInstructionEvent::Dispatched) {
Tracker.onInstructionDispatched(IID);
return;
}
if (Event.Type == HWInstructionEvent::Executed) {
Tracker.onInstructionExecuted(IID);
return;
}
if (Event.Type != HWInstructionEvent::Issued)
return;
const Instruction &IS = *Event.IR.getInstruction();
unsigned To = IID % Source.size();
unsigned Cycles = 2 * Tracker.getResourcePressureCycles(IID);
uint64_t ResourceMask = IS.getCriticalResourceMask();
SmallVector<std::pair<unsigned, unsigned>, 4> Users;
while (ResourceMask) {
uint64_t Current = ResourceMask & (-ResourceMask);
Tracker.getResourceUsers(Current, Users);
for (const std::pair<unsigned, unsigned> &U : Users)
addResourceDep(U.first % Source.size(), To, Current, U.second + Cycles);
Users.clear();
ResourceMask ^= Current;
}
const CriticalDependency &RegDep = IS.getCriticalRegDep();
if (RegDep.Cycles) {
Cycles = RegDep.Cycles + 2 * Tracker.getRegisterPressureCycles(IID);
unsigned From = RegDep.IID % Source.size();
addRegisterDep(From, To, RegDep.RegID, Cycles);
}
const CriticalDependency &MemDep = IS.getCriticalMemDep();
if (MemDep.Cycles) {
Cycles = MemDep.Cycles + 2 * Tracker.getMemoryPressureCycles(IID);
unsigned From = MemDep.IID % Source.size();
addMemoryDep(From, To, Cycles);
}
Tracker.handleInstructionIssuedEvent(
static_cast<const HWInstructionIssuedEvent &>(Event));
// Check if this is the last simulated instruction.
if (IID == ((Iterations * Source.size()) - 1))
DG.finalizeGraph(Iterations);
}
void BottleneckAnalysis::onEvent(const HWPressureEvent &Event) {
assert(Event.Reason != HWPressureEvent::INVALID &&
"Unexpected invalid event!");
Tracker.handlePressureEvent(Event);
switch (Event.Reason) {
default:
break;
case HWPressureEvent::RESOURCES:
PressureIncreasedBecauseOfResources = true;
break;
case HWPressureEvent::REGISTER_DEPS:
PressureIncreasedBecauseOfRegisterDependencies = true;
break;
case HWPressureEvent::MEMORY_DEPS:
PressureIncreasedBecauseOfMemoryDependencies = true;
break;
}
}
void BottleneckAnalysis::onCycleEnd() {
++TotalCycles;
bool PressureIncreasedBecauseOfDataDependencies =
PressureIncreasedBecauseOfRegisterDependencies ||
PressureIncreasedBecauseOfMemoryDependencies;
if (!PressureIncreasedBecauseOfResources &&
!PressureIncreasedBecauseOfDataDependencies)
return;
++BPI.PressureIncreaseCycles;
if (PressureIncreasedBecauseOfRegisterDependencies)
++BPI.RegisterDependencyCycles;
if (PressureIncreasedBecauseOfMemoryDependencies)
++BPI.MemoryDependencyCycles;
if (PressureIncreasedBecauseOfDataDependencies)
++BPI.DataDependencyCycles;
if (PressureIncreasedBecauseOfResources)
++BPI.ResourcePressureCycles;
PressureIncreasedBecauseOfResources = false;
PressureIncreasedBecauseOfRegisterDependencies = false;
PressureIncreasedBecauseOfMemoryDependencies = false;
}
void BottleneckAnalysis::printBottleneckHints(raw_ostream &OS) const {
if (!SeenStallCycles || !BPI.PressureIncreaseCycles) {
OS << "\n\nNo resource or data dependency bottlenecks discovered.\n";
return;
}
double PressurePerCycle =
(double)BPI.PressureIncreaseCycles * 100 / TotalCycles;
double ResourcePressurePerCycle =
(double)BPI.ResourcePressureCycles * 100 / TotalCycles;
double DDPerCycle = (double)BPI.DataDependencyCycles * 100 / TotalCycles;
double RegDepPressurePerCycle =
(double)BPI.RegisterDependencyCycles * 100 / TotalCycles;
double MemDepPressurePerCycle =
(double)BPI.MemoryDependencyCycles * 100 / TotalCycles;
OS << "\n\nCycles with backend pressure increase [ "
<< format("%.2f", floor((PressurePerCycle * 100) + 0.5) / 100) << "% ]";
OS << "\nThroughput Bottlenecks: "
<< "\n Resource Pressure [ "
<< format("%.2f", floor((ResourcePressurePerCycle * 100) + 0.5) / 100)
<< "% ]";
if (BPI.PressureIncreaseCycles) {
ArrayRef<unsigned> Distribution = Tracker.getResourcePressureDistribution();
const MCSchedModel &SM = STI.getSchedModel();
for (unsigned I = 0, E = Distribution.size(); I < E; ++I) {
unsigned ResourceCycles = Distribution[I];
if (ResourceCycles) {
double Frequency = (double)ResourceCycles * 100 / TotalCycles;
const MCProcResourceDesc &PRDesc = *SM.getProcResource(I);
OS << "\n - " << PRDesc.Name << " [ "
<< format("%.2f", floor((Frequency * 100) + 0.5) / 100) << "% ]";
}
}
}
OS << "\n Data Dependencies: [ "
<< format("%.2f", floor((DDPerCycle * 100) + 0.5) / 100) << "% ]";
OS << "\n - Register Dependencies [ "
<< format("%.2f", floor((RegDepPressurePerCycle * 100) + 0.5) / 100)
<< "% ]";
OS << "\n - Memory Dependencies [ "
<< format("%.2f", floor((MemDepPressurePerCycle * 100) + 0.5) / 100)
<< "% ]\n";
}
void BottleneckAnalysis::printView(raw_ostream &OS) const {
std::string Buffer;
raw_string_ostream TempStream(Buffer);
printBottleneckHints(TempStream);
TempStream.flush();
OS << Buffer;
printCriticalSequence(OS);
}
} // namespace mca.
} // namespace llvm