AArch64LegalizerInfo.cpp 29.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "AArch64LegalizerInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"

#define DEBUG_TYPE "aarch64-legalinfo"

using namespace llvm;
using namespace LegalizeActions;
using namespace LegalizeMutations;
using namespace LegalityPredicates;

AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST) {
  using namespace TargetOpcode;
  const LLT p0 = LLT::pointer(0, 64);
  const LLT s1 = LLT::scalar(1);
  const LLT s8 = LLT::scalar(8);
  const LLT s16 = LLT::scalar(16);
  const LLT s32 = LLT::scalar(32);
  const LLT s64 = LLT::scalar(64);
  const LLT s128 = LLT::scalar(128);
  const LLT s256 = LLT::scalar(256);
  const LLT s512 = LLT::scalar(512);
  const LLT v16s8 = LLT::vector(16, 8);
  const LLT v8s8 = LLT::vector(8, 8);
  const LLT v4s8 = LLT::vector(4, 8);
  const LLT v8s16 = LLT::vector(8, 16);
  const LLT v4s16 = LLT::vector(4, 16);
  const LLT v2s16 = LLT::vector(2, 16);
  const LLT v2s32 = LLT::vector(2, 32);
  const LLT v4s32 = LLT::vector(4, 32);
  const LLT v2s64 = LLT::vector(2, 64);
  const LLT v2p0 = LLT::vector(2, p0);

  // FIXME: support subtargets which have neon/fp-armv8 disabled.
  if (!ST.hasNEON() || !ST.hasFPARMv8()) {
    computeTables();
    return;
  }

  getActionDefinitionsBuilder(G_IMPLICIT_DEF)
    .legalFor({p0, s1, s8, s16, s32, s64, v2s32, v4s32, v2s64})
    .clampScalar(0, s1, s64)
    .widenScalarToNextPow2(0, 8)
    .fewerElementsIf(
      [=](const LegalityQuery &Query) {
        return Query.Types[0].isVector() &&
          (Query.Types[0].getElementType() != s64 ||
           Query.Types[0].getNumElements() != 2);
      },
      [=](const LegalityQuery &Query) {
        LLT EltTy = Query.Types[0].getElementType();
        if (EltTy == s64)
          return std::make_pair(0, LLT::vector(2, 64));
        return std::make_pair(0, EltTy);
      });

  getActionDefinitionsBuilder(G_PHI)
      .legalFor({p0, s16, s32, s64, v2s32, v4s32, v2s64})
      .clampScalar(0, s16, s64)
      .widenScalarToNextPow2(0);

  getActionDefinitionsBuilder(G_BSWAP)
      .legalFor({s32, s64, v4s32, v2s32, v2s64})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0);

  getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
      .legalFor({s32, s64, v2s32, v4s32, v2s64, v8s16, v16s8})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      .clampNumElements(0, v2s32, v4s32)
      .clampNumElements(0, v2s64, v2s64)
      .moreElementsToNextPow2(0);

  getActionDefinitionsBuilder(G_SHL)
    .legalFor({{s32, s32}, {s64, s64},
               {v2s32, v2s32}, {v4s32, v4s32}, {v2s64, v2s64}})
    .clampScalar(1, s32, s64)
    .clampScalar(0, s32, s64)
    .widenScalarToNextPow2(0)
    .clampNumElements(0, v2s32, v4s32)
    .clampNumElements(0, v2s64, v2s64)
    .moreElementsToNextPow2(0)
    .minScalarSameAs(1, 0);

  getActionDefinitionsBuilder(G_PTR_ADD)
      .legalFor({{p0, s64}})
      .clampScalar(1, s64, s64);

  getActionDefinitionsBuilder(G_PTR_MASK).legalFor({p0});

  getActionDefinitionsBuilder({G_SDIV, G_UDIV})
      .legalFor({s32, s64})
      .libcallFor({s128})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      .scalarize(0);

  getActionDefinitionsBuilder({G_LSHR, G_ASHR})
      .customIf([=](const LegalityQuery &Query) {
        const auto &SrcTy = Query.Types[0];
        const auto &AmtTy = Query.Types[1];
        return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
               AmtTy.getSizeInBits() == 32;
      })
      .legalFor({{s32, s32},
                 {s32, s64},
                 {s64, s64},
                 {v2s32, v2s32},
                 {v4s32, v4s32},
                 {v2s64, v2s64}})
      .clampScalar(1, s32, s64)
      .clampScalar(0, s32, s64)
      .minScalarSameAs(1, 0);

  getActionDefinitionsBuilder({G_SREM, G_UREM})
      .lowerFor({s1, s8, s16, s32, s64});

  getActionDefinitionsBuilder({G_SMULO, G_UMULO})
      .lowerFor({{s64, s1}});

  getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64});

  getActionDefinitionsBuilder({G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO})
      .legalFor({{s32, s1}, {s64, s1}})
      .minScalar(0, s32);

  getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG})
    .legalFor({s32, s64, v2s64, v4s32, v2s32});

  getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64});

  getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT,
                               G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
                               G_FNEARBYINT})
      // If we don't have full FP16 support, then scalarize the elements of
      // vectors containing fp16 types.
      .fewerElementsIf(
          [=, &ST](const LegalityQuery &Query) {
            const auto &Ty = Query.Types[0];
            return Ty.isVector() && Ty.getElementType() == s16 &&
                   !ST.hasFullFP16();
          },
          [=](const LegalityQuery &Query) { return std::make_pair(0, s16); })
      // If we don't have full FP16 support, then widen s16 to s32 if we
      // encounter it.
      .widenScalarIf(
          [=, &ST](const LegalityQuery &Query) {
            return Query.Types[0] == s16 && !ST.hasFullFP16();
          },
          [=](const LegalityQuery &Query) { return std::make_pair(0, s32); })
      .legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16});

  getActionDefinitionsBuilder(
      {G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW})
      // We need a call for these, so we always need to scalarize.
      .scalarize(0)
      // Regardless of FP16 support, widen 16-bit elements to 32-bits.
      .minScalar(0, s32)
      .libcallFor({s32, s64, v2s32, v4s32, v2s64});

  getActionDefinitionsBuilder(G_INSERT)
      .unsupportedIf([=](const LegalityQuery &Query) {
        return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
      })
      .legalIf([=](const LegalityQuery &Query) {
        const LLT &Ty0 = Query.Types[0];
        const LLT &Ty1 = Query.Types[1];
        if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
          return false;
        return isPowerOf2_32(Ty1.getSizeInBits()) &&
               (Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
      })
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      .maxScalarIf(typeInSet(0, {s32}), 1, s16)
      .maxScalarIf(typeInSet(0, {s64}), 1, s32)
      .widenScalarToNextPow2(1);

  getActionDefinitionsBuilder(G_EXTRACT)
      .unsupportedIf([=](const LegalityQuery &Query) {
        return Query.Types[0].getSizeInBits() >= Query.Types[1].getSizeInBits();
      })
      .legalIf([=](const LegalityQuery &Query) {
        const LLT &Ty0 = Query.Types[0];
        const LLT &Ty1 = Query.Types[1];
        if (Ty1 != s32 && Ty1 != s64 && Ty1 != s128)
          return false;
        if (Ty1 == p0)
          return true;
        return isPowerOf2_32(Ty0.getSizeInBits()) &&
               (Ty0.getSizeInBits() == 1 || Ty0.getSizeInBits() >= 8);
      })
      .clampScalar(1, s32, s128)
      .widenScalarToNextPow2(1)
      .maxScalarIf(typeInSet(1, {s32}), 0, s16)
      .maxScalarIf(typeInSet(1, {s64}), 0, s32)
      .widenScalarToNextPow2(0);

  getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
      .legalForTypesWithMemDesc({{s32, p0, 8, 8},
                                 {s32, p0, 16, 8},
                                 {s32, p0, 32, 8},
                                 {s64, p0, 8, 2},
                                 {s64, p0, 16, 2},
                                 {s64, p0, 32, 4},
                                 {s64, p0, 64, 8},
                                 {p0, p0, 64, 8},
                                 {v2s32, p0, 64, 8}})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      // TODO: We could support sum-of-pow2's but the lowering code doesn't know
      //       how to do that yet.
      .unsupportedIfMemSizeNotPow2()
      // Lower anything left over into G_*EXT and G_LOAD
      .lower();

  auto IsPtrVecPred = [=](const LegalityQuery &Query) {
    const LLT &ValTy = Query.Types[0];
    if (!ValTy.isVector())
      return false;
    const LLT EltTy = ValTy.getElementType();
    return EltTy.isPointer() && EltTy.getAddressSpace() == 0;
  };

  getActionDefinitionsBuilder(G_LOAD)
      .legalForTypesWithMemDesc({{s8, p0, 8, 8},
                                 {s16, p0, 16, 8},
                                 {s32, p0, 32, 8},
                                 {s64, p0, 64, 8},
                                 {p0, p0, 64, 8},
                                 {s128, p0, 128, 8},
                                 {v8s8, p0, 64, 8},
                                 {v16s8, p0, 128, 8},
                                 {v4s16, p0, 64, 8},
                                 {v8s16, p0, 128, 8},
                                 {v2s32, p0, 64, 8},
                                 {v4s32, p0, 128, 8},
                                 {v2s64, p0, 128, 8}})
      // These extends are also legal
      .legalForTypesWithMemDesc({{s32, p0, 8, 8},
                                 {s32, p0, 16, 8}})
      .clampScalar(0, s8, s64)
      .lowerIfMemSizeNotPow2()
      // Lower any any-extending loads left into G_ANYEXT and G_LOAD
      .lowerIf([=](const LegalityQuery &Query) {
        return Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
      })
      .widenScalarToNextPow2(0)
      .clampMaxNumElements(0, s32, 2)
      .clampMaxNumElements(0, s64, 1)
      .customIf(IsPtrVecPred);

  getActionDefinitionsBuilder(G_STORE)
      .legalForTypesWithMemDesc({{s8, p0, 8, 8},
                                 {s16, p0, 16, 8},
                                 {s32, p0, 8, 8},
                                 {s32, p0, 16, 8},
                                 {s32, p0, 32, 8},
                                 {s64, p0, 64, 8},
                                 {p0, p0, 64, 8},
                                 {s128, p0, 128, 8},
                                 {v16s8, p0, 128, 8},
                                 {v4s16, p0, 64, 8},
                                 {v8s16, p0, 128, 8},
                                 {v2s32, p0, 64, 8},
                                 {v4s32, p0, 128, 8},
                                 {v2s64, p0, 128, 8}})
      .clampScalar(0, s8, s64)
      .lowerIfMemSizeNotPow2()
      .lowerIf([=](const LegalityQuery &Query) {
        return Query.Types[0].isScalar() &&
               Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
      })
      .clampMaxNumElements(0, s32, 2)
      .clampMaxNumElements(0, s64, 1)
      .customIf(IsPtrVecPred);

  // Constants
  getActionDefinitionsBuilder(G_CONSTANT)
    .legalFor({p0, s8, s16, s32, s64})
      .clampScalar(0, s8, s64)
      .widenScalarToNextPow2(0);
  getActionDefinitionsBuilder(G_FCONSTANT)
      .legalFor({s32, s64})
      .clampScalar(0, s32, s64);

  getActionDefinitionsBuilder(G_ICMP)
      .legalFor({{s32, s32},
                 {s32, s64},
                 {s32, p0},
                 {v4s32, v4s32},
                 {v2s32, v2s32},
                 {v2s64, v2s64},
                 {v2s64, v2p0},
                 {v4s16, v4s16},
                 {v8s16, v8s16},
                 {v8s8, v8s8},
                 {v16s8, v16s8}})
      .clampScalar(1, s32, s64)
      .clampScalar(0, s32, s32)
      .minScalarEltSameAsIf(
          [=](const LegalityQuery &Query) {
            const LLT &Ty = Query.Types[0];
            const LLT &SrcTy = Query.Types[1];
            return Ty.isVector() && !SrcTy.getElementType().isPointer() &&
                   Ty.getElementType() != SrcTy.getElementType();
          },
          0, 1)
      .minScalarOrEltIf(
          [=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; },
          1, s32)
      .minScalarOrEltIf(
          [=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0,
          s64)
      .widenScalarOrEltToNextPow2(1);

  getActionDefinitionsBuilder(G_FCMP)
      .legalFor({{s32, s32}, {s32, s64}})
      .clampScalar(0, s32, s32)
      .clampScalar(1, s32, s64)
      .widenScalarToNextPow2(1);

  // Extensions
  auto ExtLegalFunc = [=](const LegalityQuery &Query) {
    unsigned DstSize = Query.Types[0].getSizeInBits();

    if (DstSize == 128 && !Query.Types[0].isVector())
      return false; // Extending to a scalar s128 needs narrowing.
    
    // Make sure that we have something that will fit in a register, and
    // make sure it's a power of 2.
    if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize))
      return false;

    const LLT &SrcTy = Query.Types[1];

    // Special case for s1.
    if (SrcTy == s1)
      return true;

    // Make sure we fit in a register otherwise. Don't bother checking that
    // the source type is below 128 bits. We shouldn't be allowing anything
    // through which is wider than the destination in the first place.
    unsigned SrcSize = SrcTy.getSizeInBits();
    if (SrcSize < 8 || !isPowerOf2_32(SrcSize))
      return false;

    return true;
  };
  getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
      .legalIf(ExtLegalFunc)
      .clampScalar(0, s64, s64); // Just for s128, others are handled above.

  getActionDefinitionsBuilder(G_TRUNC).alwaysLegal();

  getActionDefinitionsBuilder(G_SEXT_INREG).lower();

  // FP conversions
  getActionDefinitionsBuilder(G_FPTRUNC).legalFor(
      {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}});
  getActionDefinitionsBuilder(G_FPEXT).legalFor(
      {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}});

  // Conversions
  getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
      .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      .clampScalar(1, s32, s64)
      .widenScalarToNextPow2(1);

  getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
      .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
      .clampScalar(1, s32, s64)
      .widenScalarToNextPow2(1)
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0);

  // Control-flow
  getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32});
  getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});

  // Select
  // FIXME: We can probably do a bit better than just scalarizing vector
  // selects.
  getActionDefinitionsBuilder(G_SELECT)
      .legalFor({{s32, s1}, {s64, s1}, {p0, s1}})
      .clampScalar(0, s32, s64)
      .widenScalarToNextPow2(0)
      .scalarize(0);

  // Pointer-handling
  getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
  getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});

  getActionDefinitionsBuilder(G_PTRTOINT)
      .legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
      .maxScalar(0, s64)
      .widenScalarToNextPow2(0, /*Min*/ 8);

  getActionDefinitionsBuilder(G_INTTOPTR)
      .unsupportedIf([&](const LegalityQuery &Query) {
        return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
      })
      .legalFor({{p0, s64}});

  // Casts for 32 and 64-bit width type are just copies.
  // Same for 128-bit width type, except they are on the FPR bank.
  getActionDefinitionsBuilder(G_BITCAST)
      // FIXME: This is wrong since G_BITCAST is not allowed to change the
      // number of bits but it's what the previous code described and fixing
      // it breaks tests.
      .legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
                                 v8s16, v4s16, v2s16, v4s32, v2s32, v2s64,
                                 v2p0});

  getActionDefinitionsBuilder(G_VASTART).legalFor({p0});

  // va_list must be a pointer, but most sized types are pretty easy to handle
  // as the destination.
  getActionDefinitionsBuilder(G_VAARG)
      .customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
      .clampScalar(0, s8, s64)
      .widenScalarToNextPow2(0, /*Min*/ 8);

  if (ST.hasLSE()) {
    getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
        .lowerIf(all(
            typeInSet(0, {s8, s16, s32, s64}), typeIs(1, s1), typeIs(2, p0),
            atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));

    getActionDefinitionsBuilder(
        {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
         G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
         G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX, G_ATOMIC_CMPXCHG})
        .legalIf(all(
            typeInSet(0, {s8, s16, s32, s64}), typeIs(1, p0),
            atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
  }

  getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});

  // Merge/Unmerge
  for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
    unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
    unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;

    auto notValidElt = [](const LegalityQuery &Query, unsigned TypeIdx) {
      const LLT &Ty = Query.Types[TypeIdx];
      if (Ty.isVector()) {
        const LLT &EltTy = Ty.getElementType();
        if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
          return true;
        if (!isPowerOf2_32(EltTy.getSizeInBits()))
          return true;
      }
      return false;
    };

    // FIXME: This rule is horrible, but specifies the same as what we had
    // before with the particularly strange definitions removed (e.g.
    // s8 = G_MERGE_VALUES s32, s32).
    // Part of the complexity comes from these ops being extremely flexible. For
    // example, you can build/decompose vectors with it, concatenate vectors,
    // etc. and in addition to this you can also bitcast with it at the same
    // time. We've been considering breaking it up into multiple ops to make it
    // more manageable throughout the backend.
    getActionDefinitionsBuilder(Op)
        // Break up vectors with weird elements into scalars
        .fewerElementsIf(
            [=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
            scalarize(0))
        .fewerElementsIf(
            [=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
            scalarize(1))
        // Clamp the big scalar to s8-s512 and make it either a power of 2, 192,
        // or 384.
        .clampScalar(BigTyIdx, s8, s512)
        .widenScalarIf(
            [=](const LegalityQuery &Query) {
              const LLT &Ty = Query.Types[BigTyIdx];
              return !isPowerOf2_32(Ty.getSizeInBits()) &&
                     Ty.getSizeInBits() % 64 != 0;
            },
            [=](const LegalityQuery &Query) {
              // Pick the next power of 2, or a multiple of 64 over 128.
              // Whichever is smaller.
              const LLT &Ty = Query.Types[BigTyIdx];
              unsigned NewSizeInBits = 1
                                       << Log2_32_Ceil(Ty.getSizeInBits() + 1);
              if (NewSizeInBits >= 256) {
                unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
                if (RoundedTo < NewSizeInBits)
                  NewSizeInBits = RoundedTo;
              }
              return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
            })
        // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
        // worth considering the multiples of 64 since 2*192 and 2*384 are not
        // valid.
        .clampScalar(LitTyIdx, s8, s256)
        .widenScalarToNextPow2(LitTyIdx, /*Min*/ 8)
        // So at this point, we have s8, s16, s32, s64, s128, s192, s256, s384,
        // s512, <X x s8>, <X x s16>, <X x s32>, or <X x s64>.
        // At this point it's simple enough to accept the legal types.
        .legalIf([=](const LegalityQuery &Query) {
          const LLT &BigTy = Query.Types[BigTyIdx];
          const LLT &LitTy = Query.Types[LitTyIdx];
          if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
            return false;
          if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
            return false;
          return BigTy.getSizeInBits() % LitTy.getSizeInBits() == 0;
        })
        // Any vectors left are the wrong size. Scalarize them.
      .scalarize(0)
      .scalarize(1);
  }

  getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
      .unsupportedIf([=](const LegalityQuery &Query) {
        const LLT &EltTy = Query.Types[1].getElementType();
        return Query.Types[0] != EltTy;
      })
      .minScalar(2, s64)
      .legalIf([=](const LegalityQuery &Query) {
        const LLT &VecTy = Query.Types[1];
        return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
               VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32;
      });

  getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT)
      .legalIf([=](const LegalityQuery &Query) {
        const LLT &VecTy = Query.Types[0];
        // TODO: Support s8 and s16
        return VecTy == v2s32 || VecTy == v4s32 || VecTy == v2s64;
      });

  getActionDefinitionsBuilder(G_BUILD_VECTOR)
      .legalFor({{v4s16, s16},
                 {v8s16, s16},
                 {v2s32, s32},
                 {v4s32, s32},
                 {v2p0, p0},
                 {v2s64, s64}})
      .clampNumElements(0, v4s32, v4s32)
      .clampNumElements(0, v2s64, v2s64)

      // Deal with larger scalar types, which will be implicitly truncated.
      .legalIf([=](const LegalityQuery &Query) {
        return Query.Types[0].getScalarSizeInBits() <
               Query.Types[1].getSizeInBits();
      })
      .minScalarSameAs(1, 0);

  getActionDefinitionsBuilder(G_CTLZ).legalForCartesianProduct(
      {s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
      .scalarize(1);

  getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
      .legalIf([=](const LegalityQuery &Query) {
        const LLT &DstTy = Query.Types[0];
        const LLT &SrcTy = Query.Types[1];
        // For now just support the TBL2 variant which needs the source vectors
        // to be the same size as the dest.
        if (DstTy != SrcTy)
          return false;
        for (auto &Ty : {v2s32, v4s32, v2s64}) {
          if (DstTy == Ty)
            return true;
        }
        return false;
      })
      // G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we
      // just want those lowered into G_BUILD_VECTOR
      .lowerIf([=](const LegalityQuery &Query) {
        return !Query.Types[1].isVector();
      })
      .clampNumElements(0, v4s32, v4s32)
      .clampNumElements(0, v2s64, v2s64);

  getActionDefinitionsBuilder(G_CONCAT_VECTORS)
      .legalFor({{v4s32, v2s32}, {v8s16, v4s16}});

  getActionDefinitionsBuilder(G_JUMP_TABLE)
    .legalFor({{p0}, {s64}});

  getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) {
    return Query.Types[0] == p0 && Query.Types[1] == s64;
  });

  getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();

  computeTables();
  verify(*ST.getInstrInfo());
}

bool AArch64LegalizerInfo::legalizeCustom(MachineInstr &MI,
                                          MachineRegisterInfo &MRI,
                                          MachineIRBuilder &MIRBuilder,
                                          GISelChangeObserver &Observer) const {
  switch (MI.getOpcode()) {
  default:
    // No idea what to do.
    return false;
  case TargetOpcode::G_VAARG:
    return legalizeVaArg(MI, MRI, MIRBuilder);
  case TargetOpcode::G_LOAD:
  case TargetOpcode::G_STORE:
    return legalizeLoadStore(MI, MRI, MIRBuilder, Observer);
  case TargetOpcode::G_SHL:
  case TargetOpcode::G_ASHR:
  case TargetOpcode::G_LSHR:
    return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer);
  }

  llvm_unreachable("expected switch to return");
}

bool AArch64LegalizerInfo::legalizeIntrinsic(
    MachineInstr &MI, MachineRegisterInfo &MRI,
    MachineIRBuilder &MIRBuilder) const {
  switch (MI.getIntrinsicID()) {
  case Intrinsic::memcpy:
  case Intrinsic::memset:
  case Intrinsic::memmove:
    if (createMemLibcall(MIRBuilder, MRI, MI) ==
        LegalizerHelper::UnableToLegalize)
      return false;
    MI.eraseFromParent();
    return true;
  default:
    break;
  }
  return true;
}

bool AArch64LegalizerInfo::legalizeShlAshrLshr(
    MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
    GISelChangeObserver &Observer) const {
  assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
         MI.getOpcode() == TargetOpcode::G_LSHR ||
         MI.getOpcode() == TargetOpcode::G_SHL);
  // If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
  // imported patterns can select it later. Either way, it will be legal.
  Register AmtReg = MI.getOperand(2).getReg();
  auto *CstMI = MRI.getVRegDef(AmtReg);
  assert(CstMI && "expected to find a vreg def");
  if (CstMI->getOpcode() != TargetOpcode::G_CONSTANT)
    return true;
  // Check the shift amount is in range for an immediate form.
  unsigned Amount = CstMI->getOperand(1).getCImm()->getZExtValue();
  if (Amount > 31)
    return true; // This will have to remain a register variant.
  assert(MRI.getType(AmtReg).getSizeInBits() == 32);
  MIRBuilder.setInstr(MI);
  auto ExtCst = MIRBuilder.buildZExt(LLT::scalar(64), AmtReg);
  MI.getOperand(2).setReg(ExtCst.getReg(0));
  return true;
}

bool AArch64LegalizerInfo::legalizeLoadStore(
    MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
    GISelChangeObserver &Observer) const {
  assert(MI.getOpcode() == TargetOpcode::G_STORE ||
         MI.getOpcode() == TargetOpcode::G_LOAD);
  // Here we just try to handle vector loads/stores where our value type might
  // have pointer elements, which the SelectionDAG importer can't handle. To
  // allow the existing patterns for s64 to fire for p0, we just try to bitcast
  // the value to use s64 types.

  // Custom legalization requires the instruction, if not deleted, must be fully
  // legalized. In order to allow further legalization of the inst, we create
  // a new instruction and erase the existing one.

  Register ValReg = MI.getOperand(0).getReg();
  const LLT ValTy = MRI.getType(ValReg);

  if (!ValTy.isVector() || !ValTy.getElementType().isPointer() ||
      ValTy.getElementType().getAddressSpace() != 0) {
    LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store");
    return false;
  }

  MIRBuilder.setInstr(MI);
  unsigned PtrSize = ValTy.getElementType().getSizeInBits();
  const LLT NewTy = LLT::vector(ValTy.getNumElements(), PtrSize);
  auto &MMO = **MI.memoperands_begin();
  if (MI.getOpcode() == TargetOpcode::G_STORE) {
    auto Bitcast = MIRBuilder.buildBitcast({NewTy}, {ValReg});
    MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1).getReg(), MMO);
  } else {
    Register NewReg = MRI.createGenericVirtualRegister(NewTy);
    auto NewLoad = MIRBuilder.buildLoad(NewReg, MI.getOperand(1).getReg(), MMO);
    MIRBuilder.buildBitcast({ValReg}, {NewLoad});
  }
  MI.eraseFromParent();
  return true;
}

bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
                                         MachineRegisterInfo &MRI,
                                         MachineIRBuilder &MIRBuilder) const {
  MIRBuilder.setInstr(MI);
  MachineFunction &MF = MIRBuilder.getMF();
  unsigned Align = MI.getOperand(2).getImm();
  Register Dst = MI.getOperand(0).getReg();
  Register ListPtr = MI.getOperand(1).getReg();

  LLT PtrTy = MRI.getType(ListPtr);
  LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());

  const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
  Register List = MRI.createGenericVirtualRegister(PtrTy);
  MIRBuilder.buildLoad(
      List, ListPtr,
      *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
                               PtrSize, /* Align = */ PtrSize));

  Register DstPtr;
  if (Align > PtrSize) {
    // Realign the list to the actual required alignment.
    auto AlignMinus1 = MIRBuilder.buildConstant(IntPtrTy, Align - 1);

    auto ListTmp = MIRBuilder.buildPtrAdd(PtrTy, List, AlignMinus1.getReg(0));

    DstPtr = MRI.createGenericVirtualRegister(PtrTy);
    MIRBuilder.buildPtrMask(DstPtr, ListTmp, Log2_64(Align));
  } else
    DstPtr = List;

  uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8;
  MIRBuilder.buildLoad(
      Dst, DstPtr,
      *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
                               ValSize, std::max(Align, PtrSize)));

  auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrSize));

  auto NewList = MIRBuilder.buildPtrAdd(PtrTy, DstPtr, Size.getReg(0));

  MIRBuilder.buildStore(
      NewList, ListPtr,
      *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
                               PtrSize, /* Align = */ PtrSize));

  MI.eraseFromParent();
  return true;
}