RuntimeDyld.cpp 51.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//

#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "RuntimeDyldCOFF.h"
#include "RuntimeDyldELF.h"
#include "RuntimeDyldImpl.h"
#include "RuntimeDyldMachO.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/MSVCErrorWorkarounds.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include <mutex>

#include <future>

using namespace llvm;
using namespace llvm::object;

#define DEBUG_TYPE "dyld"

namespace {

enum RuntimeDyldErrorCode {
  GenericRTDyldError = 1
};

// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class RuntimeDyldErrorCategory : public std::error_category {
public:
  const char *name() const noexcept override { return "runtimedyld"; }

  std::string message(int Condition) const override {
    switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
      case GenericRTDyldError: return "Generic RuntimeDyld error";
    }
    llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
  }
};

static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;

}

char RuntimeDyldError::ID = 0;

void RuntimeDyldError::log(raw_ostream &OS) const {
  OS << ErrMsg << "\n";
}

std::error_code RuntimeDyldError::convertToErrorCode() const {
  return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
}

// Empty out-of-line virtual destructor as the key function.
RuntimeDyldImpl::~RuntimeDyldImpl() {}

// Pin LoadedObjectInfo's vtables to this file.
void RuntimeDyld::LoadedObjectInfo::anchor() {}

namespace llvm {

void RuntimeDyldImpl::registerEHFrames() {}

void RuntimeDyldImpl::deregisterEHFrames() {
  MemMgr.deregisterEHFrames();
}

#ifndef NDEBUG
static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
  dbgs() << "----- Contents of section " << S.getName() << " " << State
         << " -----";

  if (S.getAddress() == nullptr) {
    dbgs() << "\n          <section not emitted>\n";
    return;
  }

  const unsigned ColsPerRow = 16;

  uint8_t *DataAddr = S.getAddress();
  uint64_t LoadAddr = S.getLoadAddress();

  unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
  unsigned BytesRemaining = S.getSize();

  if (StartPadding) {
    dbgs() << "\n" << format("0x%016" PRIx64,
                             LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
    while (StartPadding--)
      dbgs() << "   ";
  }

  while (BytesRemaining > 0) {
    if ((LoadAddr & (ColsPerRow - 1)) == 0)
      dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";

    dbgs() << " " << format("%02x", *DataAddr);

    ++DataAddr;
    ++LoadAddr;
    --BytesRemaining;
  }

  dbgs() << "\n";
}
#endif

// Resolve the relocations for all symbols we currently know about.
void RuntimeDyldImpl::resolveRelocations() {
  std::lock_guard<sys::Mutex> locked(lock);

  // Print out the sections prior to relocation.
  LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
                 dumpSectionMemory(Sections[i], "before relocations"););

  // First, resolve relocations associated with external symbols.
  if (auto Err = resolveExternalSymbols()) {
    HasError = true;
    ErrorStr = toString(std::move(Err));
  }

  resolveLocalRelocations();

  // Print out sections after relocation.
  LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
                 dumpSectionMemory(Sections[i], "after relocations"););
}

void RuntimeDyldImpl::resolveLocalRelocations() {
  // Iterate over all outstanding relocations
  for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
    // The Section here (Sections[i]) refers to the section in which the
    // symbol for the relocation is located.  The SectionID in the relocation
    // entry provides the section to which the relocation will be applied.
    int Idx = it->first;
    uint64_t Addr = Sections[Idx].getLoadAddress();
    LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
                      << format("%p", (uintptr_t)Addr) << "\n");
    resolveRelocationList(it->second, Addr);
  }
  Relocations.clear();
}

void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
                                        uint64_t TargetAddress) {
  std::lock_guard<sys::Mutex> locked(lock);
  for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
    if (Sections[i].getAddress() == LocalAddress) {
      reassignSectionAddress(i, TargetAddress);
      return;
    }
  }
  llvm_unreachable("Attempting to remap address of unknown section!");
}

static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
                       uint64_t &Result) {
  Expected<uint64_t> AddressOrErr = Sym.getAddress();
  if (!AddressOrErr)
    return AddressOrErr.takeError();
  Result = *AddressOrErr - Sec.getAddress();
  return Error::success();
}

Expected<RuntimeDyldImpl::ObjSectionToIDMap>
RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
  std::lock_guard<sys::Mutex> locked(lock);

  // Save information about our target
  Arch = (Triple::ArchType)Obj.getArch();
  IsTargetLittleEndian = Obj.isLittleEndian();
  setMipsABI(Obj);

  // Compute the memory size required to load all sections to be loaded
  // and pass this information to the memory manager
  if (MemMgr.needsToReserveAllocationSpace()) {
    uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
    uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
    if (auto Err = computeTotalAllocSize(Obj,
                                         CodeSize, CodeAlign,
                                         RODataSize, RODataAlign,
                                         RWDataSize, RWDataAlign))
      return std::move(Err);
    MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
                                  RWDataSize, RWDataAlign);
  }

  // Used sections from the object file
  ObjSectionToIDMap LocalSections;

  // Common symbols requiring allocation, with their sizes and alignments
  CommonSymbolList CommonSymbolsToAllocate;

  uint64_t CommonSize = 0;
  uint32_t CommonAlign = 0;

  // First, collect all weak and common symbols. We need to know if stronger
  // definitions occur elsewhere.
  JITSymbolResolver::LookupSet ResponsibilitySet;
  {
    JITSymbolResolver::LookupSet Symbols;
    for (auto &Sym : Obj.symbols()) {
      uint32_t Flags = Sym.getFlags();
      if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
        // Get symbol name.
        if (auto NameOrErr = Sym.getName())
          Symbols.insert(*NameOrErr);
        else
          return NameOrErr.takeError();
      }
    }

    if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
      ResponsibilitySet = std::move(*ResultOrErr);
    else
      return ResultOrErr.takeError();
  }

  // Parse symbols
  LLVM_DEBUG(dbgs() << "Parse symbols:\n");
  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
       ++I) {
    uint32_t Flags = I->getFlags();

    // Skip undefined symbols.
    if (Flags & SymbolRef::SF_Undefined)
      continue;

    // Get the symbol type.
    object::SymbolRef::Type SymType;
    if (auto SymTypeOrErr = I->getType())
      SymType = *SymTypeOrErr;
    else
      return SymTypeOrErr.takeError();

    // Get symbol name.
    StringRef Name;
    if (auto NameOrErr = I->getName())
      Name = *NameOrErr;
    else
      return NameOrErr.takeError();

    // Compute JIT symbol flags.
    auto JITSymFlags = getJITSymbolFlags(*I);
    if (!JITSymFlags)
      return JITSymFlags.takeError();

    // If this is a weak definition, check to see if there's a strong one.
    // If there is, skip this symbol (we won't be providing it: the strong
    // definition will). If there's no strong definition, make this definition
    // strong.
    if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
      // First check whether there's already a definition in this instance.
      if (GlobalSymbolTable.count(Name))
        continue;

      // If we're not responsible for this symbol, skip it.
      if (!ResponsibilitySet.count(Name))
        continue;

      // Otherwise update the flags on the symbol to make this definition
      // strong.
      if (JITSymFlags->isWeak())
        *JITSymFlags &= ~JITSymbolFlags::Weak;
      if (JITSymFlags->isCommon()) {
        *JITSymFlags &= ~JITSymbolFlags::Common;
        uint32_t Align = I->getAlignment();
        uint64_t Size = I->getCommonSize();
        if (!CommonAlign)
          CommonAlign = Align;
        CommonSize = alignTo(CommonSize, Align) + Size;
        CommonSymbolsToAllocate.push_back(*I);
      }
    }

    if (Flags & SymbolRef::SF_Absolute &&
        SymType != object::SymbolRef::ST_File) {
      uint64_t Addr = 0;
      if (auto AddrOrErr = I->getAddress())
        Addr = *AddrOrErr;
      else
        return AddrOrErr.takeError();

      unsigned SectionID = AbsoluteSymbolSection;

      LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
                        << " SID: " << SectionID
                        << " Offset: " << format("%p", (uintptr_t)Addr)
                        << " flags: " << Flags << "\n");
      GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
    } else if (SymType == object::SymbolRef::ST_Function ||
               SymType == object::SymbolRef::ST_Data ||
               SymType == object::SymbolRef::ST_Unknown ||
               SymType == object::SymbolRef::ST_Other) {

      section_iterator SI = Obj.section_end();
      if (auto SIOrErr = I->getSection())
        SI = *SIOrErr;
      else
        return SIOrErr.takeError();

      if (SI == Obj.section_end())
        continue;

      // Get symbol offset.
      uint64_t SectOffset;
      if (auto Err = getOffset(*I, *SI, SectOffset))
        return std::move(Err);

      bool IsCode = SI->isText();
      unsigned SectionID;
      if (auto SectionIDOrErr =
              findOrEmitSection(Obj, *SI, IsCode, LocalSections))
        SectionID = *SectionIDOrErr;
      else
        return SectionIDOrErr.takeError();

      LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
                        << " SID: " << SectionID
                        << " Offset: " << format("%p", (uintptr_t)SectOffset)
                        << " flags: " << Flags << "\n");
      GlobalSymbolTable[Name] =
          SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
    }
  }

  // Allocate common symbols
  if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
                                   CommonAlign))
    return std::move(Err);

  // Parse and process relocations
  LLVM_DEBUG(dbgs() << "Parse relocations:\n");
  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
       SI != SE; ++SI) {
    StubMap Stubs;

    Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
    if (!RelSecOrErr)
      return RelSecOrErr.takeError();

    section_iterator RelocatedSection = *RelSecOrErr;
    if (RelocatedSection == SE)
      continue;

    relocation_iterator I = SI->relocation_begin();
    relocation_iterator E = SI->relocation_end();

    if (I == E && !ProcessAllSections)
      continue;

    bool IsCode = RelocatedSection->isText();
    unsigned SectionID = 0;
    if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
                                                LocalSections))
      SectionID = *SectionIDOrErr;
    else
      return SectionIDOrErr.takeError();

    LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");

    for (; I != E;)
      if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
        I = *IOrErr;
      else
        return IOrErr.takeError();

    // If there is a NotifyStubEmitted callback set, call it to register any
    // stubs created for this section.
    if (NotifyStubEmitted) {
      StringRef FileName = Obj.getFileName();
      StringRef SectionName = Sections[SectionID].getName();
      for (auto &KV : Stubs) {

        auto &VR = KV.first;
        uint64_t StubAddr = KV.second;

        // If this is a named stub, just call NotifyStubEmitted.
        if (VR.SymbolName) {
          NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
                            StubAddr);
          continue;
        }

        // Otherwise we will have to try a reverse lookup on the globla symbol table.
        for (auto &GSTMapEntry : GlobalSymbolTable) {
          StringRef SymbolName = GSTMapEntry.first();
          auto &GSTEntry = GSTMapEntry.second;
          if (GSTEntry.getSectionID() == VR.SectionID &&
              GSTEntry.getOffset() == VR.Offset) {
            NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
                              StubAddr);
            break;
          }
        }
      }
    }
  }

  // Process remaining sections
  if (ProcessAllSections) {
    LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
    for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
         SI != SE; ++SI) {

      /* Ignore already loaded sections */
      if (LocalSections.find(*SI) != LocalSections.end())
        continue;

      bool IsCode = SI->isText();
      if (auto SectionIDOrErr =
              findOrEmitSection(Obj, *SI, IsCode, LocalSections))
        LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
      else
        return SectionIDOrErr.takeError();
    }
  }

  // Give the subclasses a chance to tie-up any loose ends.
  if (auto Err = finalizeLoad(Obj, LocalSections))
    return std::move(Err);

//   for (auto E : LocalSections)
//     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";

  return LocalSections;
}

// A helper method for computeTotalAllocSize.
// Computes the memory size required to allocate sections with the given sizes,
// assuming that all sections are allocated with the given alignment
static uint64_t
computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
                                 uint64_t Alignment) {
  uint64_t TotalSize = 0;
  for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
    uint64_t AlignedSize =
        (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
    TotalSize += AlignedSize;
  }
  return TotalSize;
}

static bool isRequiredForExecution(const SectionRef Section) {
  const ObjectFile *Obj = Section.getObject();
  if (isa<object::ELFObjectFileBase>(Obj))
    return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
    const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
    // Avoid loading zero-sized COFF sections.
    // In PE files, VirtualSize gives the section size, and SizeOfRawData
    // may be zero for sections with content. In Obj files, SizeOfRawData
    // gives the section size, and VirtualSize is always zero. Hence
    // the need to check for both cases below.
    bool HasContent =
        (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
    bool IsDiscardable =
        CoffSection->Characteristics &
        (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
    return HasContent && !IsDiscardable;
  }

  assert(isa<MachOObjectFile>(Obj));
  return true;
}

static bool isReadOnlyData(const SectionRef Section) {
  const ObjectFile *Obj = Section.getObject();
  if (isa<object::ELFObjectFileBase>(Obj))
    return !(ELFSectionRef(Section).getFlags() &
             (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
    return ((COFFObj->getCOFFSection(Section)->Characteristics &
             (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
             | COFF::IMAGE_SCN_MEM_READ
             | COFF::IMAGE_SCN_MEM_WRITE))
             ==
             (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
             | COFF::IMAGE_SCN_MEM_READ));

  assert(isa<MachOObjectFile>(Obj));
  return false;
}

static bool isZeroInit(const SectionRef Section) {
  const ObjectFile *Obj = Section.getObject();
  if (isa<object::ELFObjectFileBase>(Obj))
    return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
    return COFFObj->getCOFFSection(Section)->Characteristics &
            COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;

  auto *MachO = cast<MachOObjectFile>(Obj);
  unsigned SectionType = MachO->getSectionType(Section);
  return SectionType == MachO::S_ZEROFILL ||
         SectionType == MachO::S_GB_ZEROFILL;
}

// Compute an upper bound of the memory size that is required to load all
// sections
Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
                                             uint64_t &CodeSize,
                                             uint32_t &CodeAlign,
                                             uint64_t &RODataSize,
                                             uint32_t &RODataAlign,
                                             uint64_t &RWDataSize,
                                             uint32_t &RWDataAlign) {
  // Compute the size of all sections required for execution
  std::vector<uint64_t> CodeSectionSizes;
  std::vector<uint64_t> ROSectionSizes;
  std::vector<uint64_t> RWSectionSizes;

  // Collect sizes of all sections to be loaded;
  // also determine the max alignment of all sections
  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
       SI != SE; ++SI) {
    const SectionRef &Section = *SI;

    bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;

    // Consider only the sections that are required to be loaded for execution
    if (IsRequired) {
      uint64_t DataSize = Section.getSize();
      uint64_t Alignment64 = Section.getAlignment();
      unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
      bool IsCode = Section.isText();
      bool IsReadOnly = isReadOnlyData(Section);

      Expected<StringRef> NameOrErr = Section.getName();
      if (!NameOrErr)
        return NameOrErr.takeError();
      StringRef Name = *NameOrErr;

      uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);

      uint64_t PaddingSize = 0;
      if (Name == ".eh_frame")
        PaddingSize += 4;
      if (StubBufSize != 0)
        PaddingSize += getStubAlignment() - 1;

      uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;

      // The .eh_frame section (at least on Linux) needs an extra four bytes
      // padded
      // with zeroes added at the end.  For MachO objects, this section has a
      // slightly different name, so this won't have any effect for MachO
      // objects.
      if (Name == ".eh_frame")
        SectionSize += 4;

      if (!SectionSize)
        SectionSize = 1;

      if (IsCode) {
        CodeAlign = std::max(CodeAlign, Alignment);
        CodeSectionSizes.push_back(SectionSize);
      } else if (IsReadOnly) {
        RODataAlign = std::max(RODataAlign, Alignment);
        ROSectionSizes.push_back(SectionSize);
      } else {
        RWDataAlign = std::max(RWDataAlign, Alignment);
        RWSectionSizes.push_back(SectionSize);
      }
    }
  }

  // Compute Global Offset Table size. If it is not zero we
  // also update alignment, which is equal to a size of a
  // single GOT entry.
  if (unsigned GotSize = computeGOTSize(Obj)) {
    RWSectionSizes.push_back(GotSize);
    RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
  }

  // Compute the size of all common symbols
  uint64_t CommonSize = 0;
  uint32_t CommonAlign = 1;
  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
       ++I) {
    uint32_t Flags = I->getFlags();
    if (Flags & SymbolRef::SF_Common) {
      // Add the common symbols to a list.  We'll allocate them all below.
      uint64_t Size = I->getCommonSize();
      uint32_t Align = I->getAlignment();
      // If this is the first common symbol, use its alignment as the alignment
      // for the common symbols section.
      if (CommonSize == 0)
        CommonAlign = Align;
      CommonSize = alignTo(CommonSize, Align) + Size;
    }
  }
  if (CommonSize != 0) {
    RWSectionSizes.push_back(CommonSize);
    RWDataAlign = std::max(RWDataAlign, CommonAlign);
  }

  // Compute the required allocation space for each different type of sections
  // (code, read-only data, read-write data) assuming that all sections are
  // allocated with the max alignment. Note that we cannot compute with the
  // individual alignments of the sections, because then the required size
  // depends on the order, in which the sections are allocated.
  CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
  RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
  RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);

  return Error::success();
}

// compute GOT size
unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
  size_t GotEntrySize = getGOTEntrySize();
  if (!GotEntrySize)
    return 0;

  size_t GotSize = 0;
  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
       SI != SE; ++SI) {

    for (const RelocationRef &Reloc : SI->relocations())
      if (relocationNeedsGot(Reloc))
        GotSize += GotEntrySize;
  }

  return GotSize;
}

// compute stub buffer size for the given section
unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
                                                    const SectionRef &Section) {
  unsigned StubSize = getMaxStubSize();
  if (StubSize == 0) {
    return 0;
  }
  // FIXME: this is an inefficient way to handle this. We should computed the
  // necessary section allocation size in loadObject by walking all the sections
  // once.
  unsigned StubBufSize = 0;
  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
       SI != SE; ++SI) {

    Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
    if (!RelSecOrErr)
      report_fatal_error(toString(RelSecOrErr.takeError()));

    section_iterator RelSecI = *RelSecOrErr;
    if (!(RelSecI == Section))
      continue;

    for (const RelocationRef &Reloc : SI->relocations())
      if (relocationNeedsStub(Reloc))
        StubBufSize += StubSize;
  }

  // Get section data size and alignment
  uint64_t DataSize = Section.getSize();
  uint64_t Alignment64 = Section.getAlignment();

  // Add stubbuf size alignment
  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
  unsigned StubAlignment = getStubAlignment();
  unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
  if (StubAlignment > EndAlignment)
    StubBufSize += StubAlignment - EndAlignment;
  return StubBufSize;
}

uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
                                             unsigned Size) const {
  uint64_t Result = 0;
  if (IsTargetLittleEndian) {
    Src += Size - 1;
    while (Size--)
      Result = (Result << 8) | *Src--;
  } else
    while (Size--)
      Result = (Result << 8) | *Src++;

  return Result;
}

void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
                                          unsigned Size) const {
  if (IsTargetLittleEndian) {
    while (Size--) {
      *Dst++ = Value & 0xFF;
      Value >>= 8;
    }
  } else {
    Dst += Size - 1;
    while (Size--) {
      *Dst-- = Value & 0xFF;
      Value >>= 8;
    }
  }
}

Expected<JITSymbolFlags>
RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
  return JITSymbolFlags::fromObjectSymbol(SR);
}

Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
                                         CommonSymbolList &SymbolsToAllocate,
                                         uint64_t CommonSize,
                                         uint32_t CommonAlign) {
  if (SymbolsToAllocate.empty())
    return Error::success();

  // Allocate memory for the section
  unsigned SectionID = Sections.size();
  uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
                                             "<common symbols>", false);
  if (!Addr)
    report_fatal_error("Unable to allocate memory for common symbols!");
  uint64_t Offset = 0;
  Sections.push_back(
      SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
  memset(Addr, 0, CommonSize);

  LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
                    << " new addr: " << format("%p", Addr)
                    << " DataSize: " << CommonSize << "\n");

  // Assign the address of each symbol
  for (auto &Sym : SymbolsToAllocate) {
    uint32_t Alignment = Sym.getAlignment();
    uint64_t Size = Sym.getCommonSize();
    StringRef Name;
    if (auto NameOrErr = Sym.getName())
      Name = *NameOrErr;
    else
      return NameOrErr.takeError();
    if (Alignment) {
      // This symbol has an alignment requirement.
      uint64_t AlignOffset =
          offsetToAlignment((uint64_t)Addr, Align(Alignment));
      Addr += AlignOffset;
      Offset += AlignOffset;
    }
    auto JITSymFlags = getJITSymbolFlags(Sym);

    if (!JITSymFlags)
      return JITSymFlags.takeError();

    LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
                      << format("%p", Addr) << "\n");
    GlobalSymbolTable[Name] =
        SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
    Offset += Size;
    Addr += Size;
  }

  return Error::success();
}

Expected<unsigned>
RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
                             const SectionRef &Section,
                             bool IsCode) {
  StringRef data;
  uint64_t Alignment64 = Section.getAlignment();

  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
  unsigned PaddingSize = 0;
  unsigned StubBufSize = 0;
  bool IsRequired = isRequiredForExecution(Section);
  bool IsVirtual = Section.isVirtual();
  bool IsZeroInit = isZeroInit(Section);
  bool IsReadOnly = isReadOnlyData(Section);
  uint64_t DataSize = Section.getSize();

  // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
  // while being more "polite".  Other formats do not support 0-aligned sections
  // anyway, so we should guarantee that the alignment is always at least 1.
  Alignment = std::max(1u, Alignment);

  Expected<StringRef> NameOrErr = Section.getName();
  if (!NameOrErr)
    return NameOrErr.takeError();
  StringRef Name = *NameOrErr;

  StubBufSize = computeSectionStubBufSize(Obj, Section);

  // The .eh_frame section (at least on Linux) needs an extra four bytes padded
  // with zeroes added at the end.  For MachO objects, this section has a
  // slightly different name, so this won't have any effect for MachO objects.
  if (Name == ".eh_frame")
    PaddingSize = 4;

  uintptr_t Allocate;
  unsigned SectionID = Sections.size();
  uint8_t *Addr;
  const char *pData = nullptr;

  // If this section contains any bits (i.e. isn't a virtual or bss section),
  // grab a reference to them.
  if (!IsVirtual && !IsZeroInit) {
    // In either case, set the location of the unrelocated section in memory,
    // since we still process relocations for it even if we're not applying them.
    if (Expected<StringRef> E = Section.getContents())
      data = *E;
    else
      return E.takeError();
    pData = data.data();
  }

  // If there are any stubs then the section alignment needs to be at least as
  // high as stub alignment or padding calculations may by incorrect when the
  // section is remapped.
  if (StubBufSize != 0) {
    Alignment = std::max(Alignment, getStubAlignment());
    PaddingSize += getStubAlignment() - 1;
  }

  // Some sections, such as debug info, don't need to be loaded for execution.
  // Process those only if explicitly requested.
  if (IsRequired || ProcessAllSections) {
    Allocate = DataSize + PaddingSize + StubBufSize;
    if (!Allocate)
      Allocate = 1;
    Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
                                               Name)
                  : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
                                               Name, IsReadOnly);
    if (!Addr)
      report_fatal_error("Unable to allocate section memory!");

    // Zero-initialize or copy the data from the image
    if (IsZeroInit || IsVirtual)
      memset(Addr, 0, DataSize);
    else
      memcpy(Addr, pData, DataSize);

    // Fill in any extra bytes we allocated for padding
    if (PaddingSize != 0) {
      memset(Addr + DataSize, 0, PaddingSize);
      // Update the DataSize variable to include padding.
      DataSize += PaddingSize;

      // Align DataSize to stub alignment if we have any stubs (PaddingSize will
      // have been increased above to account for this).
      if (StubBufSize > 0)
        DataSize &= -(uint64_t)getStubAlignment();
    }

    LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
                      << Name << " obj addr: " << format("%p", pData)
                      << " new addr: " << format("%p", Addr) << " DataSize: "
                      << DataSize << " StubBufSize: " << StubBufSize
                      << " Allocate: " << Allocate << "\n");
  } else {
    // Even if we didn't load the section, we need to record an entry for it
    // to handle later processing (and by 'handle' I mean don't do anything
    // with these sections).
    Allocate = 0;
    Addr = nullptr;
    LLVM_DEBUG(
        dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
               << " obj addr: " << format("%p", data.data()) << " new addr: 0"
               << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
               << " Allocate: " << Allocate << "\n");
  }

  Sections.push_back(
      SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));

  // Debug info sections are linked as if their load address was zero
  if (!IsRequired)
    Sections.back().setLoadAddress(0);

  return SectionID;
}

Expected<unsigned>
RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
                                   const SectionRef &Section,
                                   bool IsCode,
                                   ObjSectionToIDMap &LocalSections) {

  unsigned SectionID = 0;
  ObjSectionToIDMap::iterator i = LocalSections.find(Section);
  if (i != LocalSections.end())
    SectionID = i->second;
  else {
    if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
      SectionID = *SectionIDOrErr;
    else
      return SectionIDOrErr.takeError();
    LocalSections[Section] = SectionID;
  }
  return SectionID;
}

void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
                                              unsigned SectionID) {
  Relocations[SectionID].push_back(RE);
}

void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
                                             StringRef SymbolName) {
  // Relocation by symbol.  If the symbol is found in the global symbol table,
  // create an appropriate section relocation.  Otherwise, add it to
  // ExternalSymbolRelocations.
  RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
  if (Loc == GlobalSymbolTable.end()) {
    ExternalSymbolRelocations[SymbolName].push_back(RE);
  } else {
    // Copy the RE since we want to modify its addend.
    RelocationEntry RECopy = RE;
    const auto &SymInfo = Loc->second;
    RECopy.Addend += SymInfo.getOffset();
    Relocations[SymInfo.getSectionID()].push_back(RECopy);
  }
}

uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
                                             unsigned AbiVariant) {
  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
      Arch == Triple::aarch64_32) {
    // This stub has to be able to access the full address space,
    // since symbol lookup won't necessarily find a handy, in-range,
    // PLT stub for functions which could be anywhere.
    // Stub can use ip0 (== x16) to calculate address
    writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
    writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
    writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
    writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
    writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0

    return Addr;
  } else if (Arch == Triple::arm || Arch == Triple::armeb) {
    // TODO: There is only ARM far stub now. We should add the Thumb stub,
    // and stubs for branches Thumb - ARM and ARM - Thumb.
    writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
    return Addr + 4;
  } else if (IsMipsO32ABI || IsMipsN32ABI) {
    // 0:   3c190000        lui     t9,%hi(addr).
    // 4:   27390000        addiu   t9,t9,%lo(addr).
    // 8:   03200008        jr      t9.
    // c:   00000000        nop.
    const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
    const unsigned NopInstr = 0x0;
    unsigned JrT9Instr = 0x03200008;
    if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
        (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
      JrT9Instr = 0x03200009;

    writeBytesUnaligned(LuiT9Instr, Addr, 4);
    writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
    writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
    writeBytesUnaligned(NopInstr, Addr + 12, 4);
    return Addr;
  } else if (IsMipsN64ABI) {
    // 0:   3c190000        lui     t9,%highest(addr).
    // 4:   67390000        daddiu  t9,t9,%higher(addr).
    // 8:   0019CC38        dsll    t9,t9,16.
    // c:   67390000        daddiu  t9,t9,%hi(addr).
    // 10:  0019CC38        dsll    t9,t9,16.
    // 14:  67390000        daddiu  t9,t9,%lo(addr).
    // 18:  03200008        jr      t9.
    // 1c:  00000000        nop.
    const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
                   DsllT9Instr = 0x19CC38;
    const unsigned NopInstr = 0x0;
    unsigned JrT9Instr = 0x03200008;
    if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
      JrT9Instr = 0x03200009;

    writeBytesUnaligned(LuiT9Instr, Addr, 4);
    writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
    writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
    writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
    writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
    writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
    writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
    writeBytesUnaligned(NopInstr, Addr + 28, 4);
    return Addr;
  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
    // Depending on which version of the ELF ABI is in use, we need to
    // generate one of two variants of the stub.  They both start with
    // the same sequence to load the target address into r12.
    writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
    writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
    writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
    writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
    writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
    if (AbiVariant == 2) {
      // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
      // The address is already in r12 as required by the ABI.  Branch to it.
      writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
      writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
      writeInt32BE(Addr+28, 0x4E800420); // bctr
    } else {
      // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
      // Load the function address on r11 and sets it to control register. Also
      // loads the function TOC in r2 and environment pointer to r11.
      writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
      writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
      writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
      writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
      writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
      writeInt32BE(Addr+40, 0x4E800420); // bctr
    }
    return Addr;
  } else if (Arch == Triple::systemz) {
    writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
    writeInt16BE(Addr+2,  0x0000);
    writeInt16BE(Addr+4,  0x0004);
    writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
    // 8-byte address stored at Addr + 8
    return Addr;
  } else if (Arch == Triple::x86_64) {
    *Addr      = 0xFF; // jmp
    *(Addr+1)  = 0x25; // rip
    // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
  } else if (Arch == Triple::x86) {
    *Addr      = 0xE9; // 32-bit pc-relative jump.
  }
  return Addr;
}

// Assign an address to a symbol name and resolve all the relocations
// associated with it.
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
                                             uint64_t Addr) {
  // The address to use for relocation resolution is not
  // the address of the local section buffer. We must be doing
  // a remote execution environment of some sort. Relocations can't
  // be applied until all the sections have been moved.  The client must
  // trigger this with a call to MCJIT::finalize() or
  // RuntimeDyld::resolveRelocations().
  //
  // Addr is a uint64_t because we can't assume the pointer width
  // of the target is the same as that of the host. Just use a generic
  // "big enough" type.
  LLVM_DEBUG(
      dbgs() << "Reassigning address for section " << SectionID << " ("
             << Sections[SectionID].getName() << "): "
             << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
             << " -> " << format("0x%016" PRIx64, Addr) << "\n");
  Sections[SectionID].setLoadAddress(Addr);
}

void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
                                            uint64_t Value) {
  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
    const RelocationEntry &RE = Relocs[i];
    // Ignore relocations for sections that were not loaded
    if (Sections[RE.SectionID].getAddress() == nullptr)
      continue;
    resolveRelocation(RE, Value);
  }
}

void RuntimeDyldImpl::applyExternalSymbolRelocations(
    const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
  while (!ExternalSymbolRelocations.empty()) {

    StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();

    StringRef Name = i->first();
    if (Name.size() == 0) {
      // This is an absolute symbol, use an address of zero.
      LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
                        << "\n");
      RelocationList &Relocs = i->second;
      resolveRelocationList(Relocs, 0);
    } else {
      uint64_t Addr = 0;
      JITSymbolFlags Flags;
      RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
      if (Loc == GlobalSymbolTable.end()) {
        auto RRI = ExternalSymbolMap.find(Name);
        assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
        Addr = RRI->second.getAddress();
        Flags = RRI->second.getFlags();
        // The call to getSymbolAddress may have caused additional modules to
        // be loaded, which may have added new entries to the
        // ExternalSymbolRelocations map.  Consquently, we need to update our
        // iterator.  This is also why retrieval of the relocation list
        // associated with this symbol is deferred until below this point.
        // New entries may have been added to the relocation list.
        i = ExternalSymbolRelocations.find(Name);
      } else {
        // We found the symbol in our global table.  It was probably in a
        // Module that we loaded previously.
        const auto &SymInfo = Loc->second;
        Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
               SymInfo.getOffset();
        Flags = SymInfo.getFlags();
      }

      // FIXME: Implement error handling that doesn't kill the host program!
      if (!Addr)
        report_fatal_error("Program used external function '" + Name +
                           "' which could not be resolved!");

      // If Resolver returned UINT64_MAX, the client wants to handle this symbol
      // manually and we shouldn't resolve its relocations.
      if (Addr != UINT64_MAX) {

        // Tweak the address based on the symbol flags if necessary.
        // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
        // if the target symbol is Thumb.
        Addr = modifyAddressBasedOnFlags(Addr, Flags);

        LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
                          << format("0x%lx", Addr) << "\n");
        // This list may have been updated when we called getSymbolAddress, so
        // don't change this code to get the list earlier.
        RelocationList &Relocs = i->second;
        resolveRelocationList(Relocs, Addr);
      }
    }

    ExternalSymbolRelocations.erase(i);
  }
}

Error RuntimeDyldImpl::resolveExternalSymbols() {
  StringMap<JITEvaluatedSymbol> ExternalSymbolMap;

  // Resolution can trigger emission of more symbols, so iterate until
  // we've resolved *everything*.
  {
    JITSymbolResolver::LookupSet ResolvedSymbols;

    while (true) {
      JITSymbolResolver::LookupSet NewSymbols;

      for (auto &RelocKV : ExternalSymbolRelocations) {
        StringRef Name = RelocKV.first();
        if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
            !ResolvedSymbols.count(Name))
          NewSymbols.insert(Name);
      }

      if (NewSymbols.empty())
        break;

#ifdef _MSC_VER
      using ExpectedLookupResult =
          MSVCPExpected<JITSymbolResolver::LookupResult>;
#else
      using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
#endif

      auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
      auto NewSymbolsF = NewSymbolsP->get_future();
      Resolver.lookup(NewSymbols,
                      [=](Expected<JITSymbolResolver::LookupResult> Result) {
                        NewSymbolsP->set_value(std::move(Result));
                      });

      auto NewResolverResults = NewSymbolsF.get();

      if (!NewResolverResults)
        return NewResolverResults.takeError();

      assert(NewResolverResults->size() == NewSymbols.size() &&
             "Should have errored on unresolved symbols");

      for (auto &RRKV : *NewResolverResults) {
        assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
        ExternalSymbolMap.insert(RRKV);
        ResolvedSymbols.insert(RRKV.first);
      }
    }
  }

  applyExternalSymbolRelocations(ExternalSymbolMap);

  return Error::success();
}

void RuntimeDyldImpl::finalizeAsync(
    std::unique_ptr<RuntimeDyldImpl> This,
    unique_function<void(Error)> OnEmitted,
    std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {

  auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
  auto PostResolveContinuation =
      [SharedThis, OnEmitted = std::move(OnEmitted),
       UnderlyingBuffer = std::move(UnderlyingBuffer)](
          Expected<JITSymbolResolver::LookupResult> Result) mutable {
        if (!Result) {
          OnEmitted(Result.takeError());
          return;
        }

        /// Copy the result into a StringMap, where the keys are held by value.
        StringMap<JITEvaluatedSymbol> Resolved;
        for (auto &KV : *Result)
          Resolved[KV.first] = KV.second;

        SharedThis->applyExternalSymbolRelocations(Resolved);
        SharedThis->resolveLocalRelocations();
        SharedThis->registerEHFrames();
        std::string ErrMsg;
        if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
          OnEmitted(make_error<StringError>(std::move(ErrMsg),
                                            inconvertibleErrorCode()));
        else
          OnEmitted(Error::success());
      };

  JITSymbolResolver::LookupSet Symbols;

  for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
    StringRef Name = RelocKV.first();
    assert(!Name.empty() && "Symbol has no name?");
    assert(!SharedThis->GlobalSymbolTable.count(Name) &&
           "Name already processed. RuntimeDyld instances can not be re-used "
           "when finalizing with finalizeAsync.");
    Symbols.insert(Name);
  }

  if (!Symbols.empty()) {
    SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
  } else
    PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
}

//===----------------------------------------------------------------------===//
// RuntimeDyld class implementation

uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
                                          const object::SectionRef &Sec) const {

  auto I = ObjSecToIDMap.find(Sec);
  if (I != ObjSecToIDMap.end())
    return RTDyld.Sections[I->second].getLoadAddress();

  return 0;
}

void RuntimeDyld::MemoryManager::anchor() {}
void JITSymbolResolver::anchor() {}
void LegacyJITSymbolResolver::anchor() {}

RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
                         JITSymbolResolver &Resolver)
    : MemMgr(MemMgr), Resolver(Resolver) {
  // FIXME: There's a potential issue lurking here if a single instance of
  // RuntimeDyld is used to load multiple objects.  The current implementation
  // associates a single memory manager with a RuntimeDyld instance.  Even
  // though the public class spawns a new 'impl' instance for each load,
  // they share a single memory manager.  This can become a problem when page
  // permissions are applied.
  Dyld = nullptr;
  ProcessAllSections = false;
}

RuntimeDyld::~RuntimeDyld() {}

static std::unique_ptr<RuntimeDyldCOFF>
createRuntimeDyldCOFF(
                     Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
                     JITSymbolResolver &Resolver, bool ProcessAllSections,
                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
  std::unique_ptr<RuntimeDyldCOFF> Dyld =
    RuntimeDyldCOFF::create(Arch, MM, Resolver);
  Dyld->setProcessAllSections(ProcessAllSections);
  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
  return Dyld;
}

static std::unique_ptr<RuntimeDyldELF>
createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
                     JITSymbolResolver &Resolver, bool ProcessAllSections,
                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
  std::unique_ptr<RuntimeDyldELF> Dyld =
      RuntimeDyldELF::create(Arch, MM, Resolver);
  Dyld->setProcessAllSections(ProcessAllSections);
  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
  return Dyld;
}

static std::unique_ptr<RuntimeDyldMachO>
createRuntimeDyldMachO(
                     Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
                     JITSymbolResolver &Resolver,
                     bool ProcessAllSections,
                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
  std::unique_ptr<RuntimeDyldMachO> Dyld =
    RuntimeDyldMachO::create(Arch, MM, Resolver);
  Dyld->setProcessAllSections(ProcessAllSections);
  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
  return Dyld;
}

std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
RuntimeDyld::loadObject(const ObjectFile &Obj) {
  if (!Dyld) {
    if (Obj.isELF())
      Dyld =
          createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
                               MemMgr, Resolver, ProcessAllSections,
                               std::move(NotifyStubEmitted));
    else if (Obj.isMachO())
      Dyld = createRuntimeDyldMachO(
               static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
               ProcessAllSections, std::move(NotifyStubEmitted));
    else if (Obj.isCOFF())
      Dyld = createRuntimeDyldCOFF(
               static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
               ProcessAllSections, std::move(NotifyStubEmitted));
    else
      report_fatal_error("Incompatible object format!");
  }

  if (!Dyld->isCompatibleFile(Obj))
    report_fatal_error("Incompatible object format!");

  auto LoadedObjInfo = Dyld->loadObject(Obj);
  MemMgr.notifyObjectLoaded(*this, Obj);
  return LoadedObjInfo;
}

void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
  if (!Dyld)
    return nullptr;
  return Dyld->getSymbolLocalAddress(Name);
}

unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
  assert(Dyld && "No RuntimeDyld instance attached");
  return Dyld->getSymbolSectionID(Name);
}

JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
  if (!Dyld)
    return nullptr;
  return Dyld->getSymbol(Name);
}

std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
  if (!Dyld)
    return std::map<StringRef, JITEvaluatedSymbol>();
  return Dyld->getSymbolTable();
}

void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }

void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
  Dyld->reassignSectionAddress(SectionID, Addr);
}

void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
                                    uint64_t TargetAddress) {
  Dyld->mapSectionAddress(LocalAddress, TargetAddress);
}

bool RuntimeDyld::hasError() { return Dyld->hasError(); }

StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }

void RuntimeDyld::finalizeWithMemoryManagerLocking() {
  bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
  MemMgr.FinalizationLocked = true;
  resolveRelocations();
  registerEHFrames();
  if (!MemoryFinalizationLocked) {
    MemMgr.finalizeMemory();
    MemMgr.FinalizationLocked = false;
  }
}

StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
  assert(Dyld && "No Dyld instance attached");
  return Dyld->getSectionContent(SectionID);
}

uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
  assert(Dyld && "No Dyld instance attached");
  return Dyld->getSectionLoadAddress(SectionID);
}

void RuntimeDyld::registerEHFrames() {
  if (Dyld)
    Dyld->registerEHFrames();
}

void RuntimeDyld::deregisterEHFrames() {
  if (Dyld)
    Dyld->deregisterEHFrames();
}
// FIXME: Kill this with fire once we have a new JIT linker: this is only here
// so that we can re-use RuntimeDyld's implementation without twisting the
// interface any further for ORC's purposes.
void jitLinkForORC(object::ObjectFile &Obj,
                   std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
                   RuntimeDyld::MemoryManager &MemMgr,
                   JITSymbolResolver &Resolver, bool ProcessAllSections,
                   unique_function<Error(
                       std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
                       std::map<StringRef, JITEvaluatedSymbol>)>
                       OnLoaded,
                   unique_function<void(Error)> OnEmitted) {

  RuntimeDyld RTDyld(MemMgr, Resolver);
  RTDyld.setProcessAllSections(ProcessAllSections);

  auto Info = RTDyld.loadObject(Obj);

  if (RTDyld.hasError()) {
    OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
                                      inconvertibleErrorCode()));
    return;
  }

  if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
    OnEmitted(std::move(Err));

  RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
                                 std::move(UnderlyingBuffer));
}

} // end namespace llvm