NativeProcessProtocol.cpp
26.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
//===-- NativeProcessProtocol.cpp -------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Host/common/NativeProcessProtocol.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/common/NativeBreakpointList.h"
#include "lldb/Host/common/NativeRegisterContext.h"
#include "lldb/Host/common/NativeThreadProtocol.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/State.h"
#include "lldb/lldb-enumerations.h"
#include "llvm/Support/Process.h"
using namespace lldb;
using namespace lldb_private;
// NativeProcessProtocol Members
NativeProcessProtocol::NativeProcessProtocol(lldb::pid_t pid, int terminal_fd,
NativeDelegate &delegate)
: m_pid(pid), m_terminal_fd(terminal_fd) {
bool registered = RegisterNativeDelegate(delegate);
assert(registered);
(void)registered;
}
lldb_private::Status NativeProcessProtocol::Interrupt() {
Status error;
#if !defined(SIGSTOP)
error.SetErrorString("local host does not support signaling");
return error;
#else
return Signal(SIGSTOP);
#endif
}
Status NativeProcessProtocol::IgnoreSignals(llvm::ArrayRef<int> signals) {
m_signals_to_ignore.clear();
m_signals_to_ignore.insert(signals.begin(), signals.end());
return Status();
}
lldb_private::Status
NativeProcessProtocol::GetMemoryRegionInfo(lldb::addr_t load_addr,
MemoryRegionInfo &range_info) {
// Default: not implemented.
return Status("not implemented");
}
llvm::Optional<WaitStatus> NativeProcessProtocol::GetExitStatus() {
if (m_state == lldb::eStateExited)
return m_exit_status;
return llvm::None;
}
bool NativeProcessProtocol::SetExitStatus(WaitStatus status,
bool bNotifyStateChange) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
LLDB_LOG(log, "status = {0}, notify = {1}", status, bNotifyStateChange);
// Exit status already set
if (m_state == lldb::eStateExited) {
if (m_exit_status)
LLDB_LOG(log, "exit status already set to {0}", *m_exit_status);
else
LLDB_LOG(log, "state is exited, but status not set");
return false;
}
m_state = lldb::eStateExited;
m_exit_status = status;
if (bNotifyStateChange)
SynchronouslyNotifyProcessStateChanged(lldb::eStateExited);
return true;
}
NativeThreadProtocol *NativeProcessProtocol::GetThreadAtIndex(uint32_t idx) {
std::lock_guard<std::recursive_mutex> guard(m_threads_mutex);
if (idx < m_threads.size())
return m_threads[idx].get();
return nullptr;
}
NativeThreadProtocol *
NativeProcessProtocol::GetThreadByIDUnlocked(lldb::tid_t tid) {
for (const auto &thread : m_threads) {
if (thread->GetID() == tid)
return thread.get();
}
return nullptr;
}
NativeThreadProtocol *NativeProcessProtocol::GetThreadByID(lldb::tid_t tid) {
std::lock_guard<std::recursive_mutex> guard(m_threads_mutex);
return GetThreadByIDUnlocked(tid);
}
bool NativeProcessProtocol::IsAlive() const {
return m_state != eStateDetached && m_state != eStateExited &&
m_state != eStateInvalid && m_state != eStateUnloaded;
}
const NativeWatchpointList::WatchpointMap &
NativeProcessProtocol::GetWatchpointMap() const {
return m_watchpoint_list.GetWatchpointMap();
}
llvm::Optional<std::pair<uint32_t, uint32_t>>
NativeProcessProtocol::GetHardwareDebugSupportInfo() const {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
// get any thread
NativeThreadProtocol *thread(
const_cast<NativeProcessProtocol *>(this)->GetThreadAtIndex(0));
if (!thread) {
LLDB_LOG(log, "failed to find a thread to grab a NativeRegisterContext!");
return llvm::None;
}
NativeRegisterContext ®_ctx = thread->GetRegisterContext();
return std::make_pair(reg_ctx.NumSupportedHardwareBreakpoints(),
reg_ctx.NumSupportedHardwareWatchpoints());
}
Status NativeProcessProtocol::SetWatchpoint(lldb::addr_t addr, size_t size,
uint32_t watch_flags,
bool hardware) {
// This default implementation assumes setting the watchpoint for the process
// will require setting the watchpoint for each of the threads. Furthermore,
// it will track watchpoints set for the process and will add them to each
// thread that is attached to via the (FIXME implement) OnThreadAttached ()
// method.
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
// Update the thread list
UpdateThreads();
// Keep track of the threads we successfully set the watchpoint for. If one
// of the thread watchpoint setting operations fails, back off and remove the
// watchpoint for all the threads that were successfully set so we get back
// to a consistent state.
std::vector<NativeThreadProtocol *> watchpoint_established_threads;
// Tell each thread to set a watchpoint. In the event that hardware
// watchpoints are requested but the SetWatchpoint fails, try to set a
// software watchpoint as a fallback. It's conceivable that if there are
// more threads than hardware watchpoints available, some of the threads will
// fail to set hardware watchpoints while software ones may be available.
std::lock_guard<std::recursive_mutex> guard(m_threads_mutex);
for (const auto &thread : m_threads) {
assert(thread && "thread list should not have a NULL thread!");
Status thread_error =
thread->SetWatchpoint(addr, size, watch_flags, hardware);
if (thread_error.Fail() && hardware) {
// Try software watchpoints since we failed on hardware watchpoint
// setting and we may have just run out of hardware watchpoints.
thread_error = thread->SetWatchpoint(addr, size, watch_flags, false);
if (thread_error.Success())
LLDB_LOG(log,
"hardware watchpoint requested but software watchpoint set");
}
if (thread_error.Success()) {
// Remember that we set this watchpoint successfully in case we need to
// clear it later.
watchpoint_established_threads.push_back(thread.get());
} else {
// Unset the watchpoint for each thread we successfully set so that we
// get back to a consistent state of "not set" for the watchpoint.
for (auto unwatch_thread_sp : watchpoint_established_threads) {
Status remove_error = unwatch_thread_sp->RemoveWatchpoint(addr);
if (remove_error.Fail())
LLDB_LOG(log, "RemoveWatchpoint failed for pid={0}, tid={1}: {2}",
GetID(), unwatch_thread_sp->GetID(), remove_error);
}
return thread_error;
}
}
return m_watchpoint_list.Add(addr, size, watch_flags, hardware);
}
Status NativeProcessProtocol::RemoveWatchpoint(lldb::addr_t addr) {
// Update the thread list
UpdateThreads();
Status overall_error;
std::lock_guard<std::recursive_mutex> guard(m_threads_mutex);
for (const auto &thread : m_threads) {
assert(thread && "thread list should not have a NULL thread!");
const Status thread_error = thread->RemoveWatchpoint(addr);
if (thread_error.Fail()) {
// Keep track of the first thread error if any threads fail. We want to
// try to remove the watchpoint from every thread, though, even if one or
// more have errors.
if (!overall_error.Fail())
overall_error = thread_error;
}
}
const Status error = m_watchpoint_list.Remove(addr);
return overall_error.Fail() ? overall_error : error;
}
const HardwareBreakpointMap &
NativeProcessProtocol::GetHardwareBreakpointMap() const {
return m_hw_breakpoints_map;
}
Status NativeProcessProtocol::SetHardwareBreakpoint(lldb::addr_t addr,
size_t size) {
// This default implementation assumes setting a hardware breakpoint for this
// process will require setting same hardware breakpoint for each of its
// existing threads. New thread will do the same once created.
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
// Update the thread list
UpdateThreads();
// Exit here if target does not have required hardware breakpoint capability.
auto hw_debug_cap = GetHardwareDebugSupportInfo();
if (hw_debug_cap == llvm::None || hw_debug_cap->first == 0 ||
hw_debug_cap->first <= m_hw_breakpoints_map.size())
return Status("Target does not have required no of hardware breakpoints");
// Vector below stores all thread pointer for which we have we successfully
// set this hardware breakpoint. If any of the current process threads fails
// to set this hardware breakpoint then roll back and remove this breakpoint
// for all the threads that had already set it successfully.
std::vector<NativeThreadProtocol *> breakpoint_established_threads;
// Request to set a hardware breakpoint for each of current process threads.
std::lock_guard<std::recursive_mutex> guard(m_threads_mutex);
for (const auto &thread : m_threads) {
assert(thread && "thread list should not have a NULL thread!");
Status thread_error = thread->SetHardwareBreakpoint(addr, size);
if (thread_error.Success()) {
// Remember that we set this breakpoint successfully in case we need to
// clear it later.
breakpoint_established_threads.push_back(thread.get());
} else {
// Unset the breakpoint for each thread we successfully set so that we
// get back to a consistent state of "not set" for this hardware
// breakpoint.
for (auto rollback_thread_sp : breakpoint_established_threads) {
Status remove_error =
rollback_thread_sp->RemoveHardwareBreakpoint(addr);
if (remove_error.Fail())
LLDB_LOG(log,
"RemoveHardwareBreakpoint failed for pid={0}, tid={1}: {2}",
GetID(), rollback_thread_sp->GetID(), remove_error);
}
return thread_error;
}
}
// Register new hardware breakpoint into hardware breakpoints map of current
// process.
m_hw_breakpoints_map[addr] = {addr, size};
return Status();
}
Status NativeProcessProtocol::RemoveHardwareBreakpoint(lldb::addr_t addr) {
// Update the thread list
UpdateThreads();
Status error;
std::lock_guard<std::recursive_mutex> guard(m_threads_mutex);
for (const auto &thread : m_threads) {
assert(thread && "thread list should not have a NULL thread!");
error = thread->RemoveHardwareBreakpoint(addr);
}
// Also remove from hardware breakpoint map of current process.
m_hw_breakpoints_map.erase(addr);
return error;
}
bool NativeProcessProtocol::RegisterNativeDelegate(
NativeDelegate &native_delegate) {
std::lock_guard<std::recursive_mutex> guard(m_delegates_mutex);
if (std::find(m_delegates.begin(), m_delegates.end(), &native_delegate) !=
m_delegates.end())
return false;
m_delegates.push_back(&native_delegate);
native_delegate.InitializeDelegate(this);
return true;
}
bool NativeProcessProtocol::UnregisterNativeDelegate(
NativeDelegate &native_delegate) {
std::lock_guard<std::recursive_mutex> guard(m_delegates_mutex);
const auto initial_size = m_delegates.size();
m_delegates.erase(
remove(m_delegates.begin(), m_delegates.end(), &native_delegate),
m_delegates.end());
// We removed the delegate if the count of delegates shrank after removing
// all copies of the given native_delegate from the vector.
return m_delegates.size() < initial_size;
}
void NativeProcessProtocol::SynchronouslyNotifyProcessStateChanged(
lldb::StateType state) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
std::lock_guard<std::recursive_mutex> guard(m_delegates_mutex);
for (auto native_delegate : m_delegates)
native_delegate->ProcessStateChanged(this, state);
if (log) {
if (!m_delegates.empty()) {
LLDB_LOGF(log,
"NativeProcessProtocol::%s: sent state notification [%s] "
"from process %" PRIu64,
__FUNCTION__, lldb_private::StateAsCString(state), GetID());
} else {
LLDB_LOGF(log,
"NativeProcessProtocol::%s: would send state notification "
"[%s] from process %" PRIu64 ", but no delegates",
__FUNCTION__, lldb_private::StateAsCString(state), GetID());
}
}
}
void NativeProcessProtocol::NotifyDidExec() {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
LLDB_LOGF(log, "NativeProcessProtocol::%s - preparing to call delegates",
__FUNCTION__);
{
std::lock_guard<std::recursive_mutex> guard(m_delegates_mutex);
for (auto native_delegate : m_delegates)
native_delegate->DidExec(this);
}
}
Status NativeProcessProtocol::SetSoftwareBreakpoint(lldb::addr_t addr,
uint32_t size_hint) {
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
LLDB_LOG(log, "addr = {0:x}, size_hint = {1}", addr, size_hint);
auto it = m_software_breakpoints.find(addr);
if (it != m_software_breakpoints.end()) {
++it->second.ref_count;
return Status();
}
auto expected_bkpt = EnableSoftwareBreakpoint(addr, size_hint);
if (!expected_bkpt)
return Status(expected_bkpt.takeError());
m_software_breakpoints.emplace(addr, std::move(*expected_bkpt));
return Status();
}
Status NativeProcessProtocol::RemoveSoftwareBreakpoint(lldb::addr_t addr) {
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
LLDB_LOG(log, "addr = {0:x}", addr);
auto it = m_software_breakpoints.find(addr);
if (it == m_software_breakpoints.end())
return Status("Breakpoint not found.");
assert(it->second.ref_count > 0);
if (--it->second.ref_count > 0)
return Status();
// This is the last reference. Let's remove the breakpoint.
Status error;
// Clear a software breakpoint instruction
llvm::SmallVector<uint8_t, 4> curr_break_op(
it->second.breakpoint_opcodes.size(), 0);
// Read the breakpoint opcode
size_t bytes_read = 0;
error =
ReadMemory(addr, curr_break_op.data(), curr_break_op.size(), bytes_read);
if (error.Fail() || bytes_read < curr_break_op.size()) {
return Status("addr=0x%" PRIx64
": tried to read %zu bytes but only read %zu",
addr, curr_break_op.size(), bytes_read);
}
const auto &saved = it->second.saved_opcodes;
// Make sure the breakpoint opcode exists at this address
if (makeArrayRef(curr_break_op) != it->second.breakpoint_opcodes) {
if (curr_break_op != it->second.saved_opcodes)
return Status("Original breakpoint trap is no longer in memory.");
LLDB_LOG(log,
"Saved opcodes ({0:@[x]}) have already been restored at {1:x}.",
llvm::make_range(saved.begin(), saved.end()), addr);
} else {
// We found a valid breakpoint opcode at this address, now restore the
// saved opcode.
size_t bytes_written = 0;
error = WriteMemory(addr, saved.data(), saved.size(), bytes_written);
if (error.Fail() || bytes_written < saved.size()) {
return Status("addr=0x%" PRIx64
": tried to write %zu bytes but only wrote %zu",
addr, saved.size(), bytes_written);
}
// Verify that our original opcode made it back to the inferior
llvm::SmallVector<uint8_t, 4> verify_opcode(saved.size(), 0);
size_t verify_bytes_read = 0;
error = ReadMemory(addr, verify_opcode.data(), verify_opcode.size(),
verify_bytes_read);
if (error.Fail() || verify_bytes_read < verify_opcode.size()) {
return Status("addr=0x%" PRIx64
": tried to read %zu verification bytes but only read %zu",
addr, verify_opcode.size(), verify_bytes_read);
}
if (verify_opcode != saved)
LLDB_LOG(log, "Restoring bytes at {0:x}: {1:@[x]}", addr,
llvm::make_range(saved.begin(), saved.end()));
}
m_software_breakpoints.erase(it);
return Status();
}
llvm::Expected<NativeProcessProtocol::SoftwareBreakpoint>
NativeProcessProtocol::EnableSoftwareBreakpoint(lldb::addr_t addr,
uint32_t size_hint) {
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
auto expected_trap = GetSoftwareBreakpointTrapOpcode(size_hint);
if (!expected_trap)
return expected_trap.takeError();
llvm::SmallVector<uint8_t, 4> saved_opcode_bytes(expected_trap->size(), 0);
// Save the original opcodes by reading them so we can restore later.
size_t bytes_read = 0;
Status error = ReadMemory(addr, saved_opcode_bytes.data(),
saved_opcode_bytes.size(), bytes_read);
if (error.Fail())
return error.ToError();
// Ensure we read as many bytes as we expected.
if (bytes_read != saved_opcode_bytes.size()) {
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"Failed to read memory while attempting to set breakpoint: attempted "
"to read {0} bytes but only read {1}.",
saved_opcode_bytes.size(), bytes_read);
}
LLDB_LOG(
log, "Overwriting bytes at {0:x}: {1:@[x]}", addr,
llvm::make_range(saved_opcode_bytes.begin(), saved_opcode_bytes.end()));
// Write a software breakpoint in place of the original opcode.
size_t bytes_written = 0;
error = WriteMemory(addr, expected_trap->data(), expected_trap->size(),
bytes_written);
if (error.Fail())
return error.ToError();
// Ensure we wrote as many bytes as we expected.
if (bytes_written != expected_trap->size()) {
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"Failed write memory while attempting to set "
"breakpoint: attempted to write {0} bytes but only wrote {1}",
expected_trap->size(), bytes_written);
}
llvm::SmallVector<uint8_t, 4> verify_bp_opcode_bytes(expected_trap->size(),
0);
size_t verify_bytes_read = 0;
error = ReadMemory(addr, verify_bp_opcode_bytes.data(),
verify_bp_opcode_bytes.size(), verify_bytes_read);
if (error.Fail())
return error.ToError();
// Ensure we read as many verification bytes as we expected.
if (verify_bytes_read != verify_bp_opcode_bytes.size()) {
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"Failed to read memory while "
"attempting to verify breakpoint: attempted to read {0} bytes "
"but only read {1}",
verify_bp_opcode_bytes.size(), verify_bytes_read);
}
if (llvm::makeArrayRef(verify_bp_opcode_bytes.data(), verify_bytes_read) !=
*expected_trap) {
return llvm::createStringError(
llvm::inconvertibleErrorCode(),
"Verification of software breakpoint "
"writing failed - trap opcodes not successfully read back "
"after writing when setting breakpoint at {0:x}",
addr);
}
LLDB_LOG(log, "addr = {0:x}: SUCCESS", addr);
return SoftwareBreakpoint{1, saved_opcode_bytes, *expected_trap};
}
llvm::Expected<llvm::ArrayRef<uint8_t>>
NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4};
static const uint8_t g_i386_opcode[] = {0xCC};
static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d};
static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00};
static const uint8_t g_s390x_opcode[] = {0x00, 0x01};
static const uint8_t g_ppc64le_opcode[] = {0x08, 0x00, 0xe0, 0x7f}; // trap
switch (GetArchitecture().GetMachine()) {
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
return llvm::makeArrayRef(g_aarch64_opcode);
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return llvm::makeArrayRef(g_i386_opcode);
case llvm::Triple::mips:
case llvm::Triple::mips64:
return llvm::makeArrayRef(g_mips64_opcode);
case llvm::Triple::mipsel:
case llvm::Triple::mips64el:
return llvm::makeArrayRef(g_mips64el_opcode);
case llvm::Triple::systemz:
return llvm::makeArrayRef(g_s390x_opcode);
case llvm::Triple::ppc64le:
return llvm::makeArrayRef(g_ppc64le_opcode);
default:
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"CPU type not supported!");
}
}
size_t NativeProcessProtocol::GetSoftwareBreakpointPCOffset() {
switch (GetArchitecture().GetMachine()) {
case llvm::Triple::x86:
case llvm::Triple::x86_64:
case llvm::Triple::systemz:
// These architectures report increment the PC after breakpoint is hit.
return cantFail(GetSoftwareBreakpointTrapOpcode(0)).size();
case llvm::Triple::arm:
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::ppc64le:
// On these architectures the PC doesn't get updated for breakpoint hits.
return 0;
default:
llvm_unreachable("CPU type not supported!");
}
}
void NativeProcessProtocol::FixupBreakpointPCAsNeeded(
NativeThreadProtocol &thread) {
Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS);
Status error;
// Find out the size of a breakpoint (might depend on where we are in the
// code).
NativeRegisterContext &context = thread.GetRegisterContext();
uint32_t breakpoint_size = GetSoftwareBreakpointPCOffset();
LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size);
if (breakpoint_size == 0)
return;
// First try probing for a breakpoint at a software breakpoint location: PC -
// breakpoint size.
const lldb::addr_t initial_pc_addr = context.GetPCfromBreakpointLocation();
lldb::addr_t breakpoint_addr = initial_pc_addr;
// Do not allow breakpoint probe to wrap around.
if (breakpoint_addr >= breakpoint_size)
breakpoint_addr -= breakpoint_size;
if (m_software_breakpoints.count(breakpoint_addr) == 0) {
// We didn't find one at a software probe location. Nothing to do.
LLDB_LOG(log,
"pid {0} no lldb software breakpoint found at current pc with "
"adjustment: {1}",
GetID(), breakpoint_addr);
return;
}
//
// We have a software breakpoint and need to adjust the PC.
//
// Change the program counter.
LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(),
thread.GetID(), initial_pc_addr, breakpoint_addr);
error = context.SetPC(breakpoint_addr);
if (error.Fail()) {
// This can happen in case the process was killed between the time we read
// the PC and when we are updating it. There's nothing better to do than to
// swallow the error.
LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(),
thread.GetID(), error);
}
}
Status NativeProcessProtocol::RemoveBreakpoint(lldb::addr_t addr,
bool hardware) {
if (hardware)
return RemoveHardwareBreakpoint(addr);
else
return RemoveSoftwareBreakpoint(addr);
}
Status NativeProcessProtocol::ReadMemoryWithoutTrap(lldb::addr_t addr,
void *buf, size_t size,
size_t &bytes_read) {
Status error = ReadMemory(addr, buf, size, bytes_read);
if (error.Fail())
return error;
auto data =
llvm::makeMutableArrayRef(static_cast<uint8_t *>(buf), bytes_read);
for (const auto &pair : m_software_breakpoints) {
lldb::addr_t bp_addr = pair.first;
auto saved_opcodes = makeArrayRef(pair.second.saved_opcodes);
if (bp_addr + saved_opcodes.size() < addr || addr + bytes_read <= bp_addr)
continue; // Breapoint not in range, ignore
if (bp_addr < addr) {
saved_opcodes = saved_opcodes.drop_front(addr - bp_addr);
bp_addr = addr;
}
auto bp_data = data.drop_front(bp_addr - addr);
std::copy_n(saved_opcodes.begin(),
std::min(saved_opcodes.size(), bp_data.size()),
bp_data.begin());
}
return Status();
}
llvm::Expected<llvm::StringRef>
NativeProcessProtocol::ReadCStringFromMemory(lldb::addr_t addr, char *buffer,
size_t max_size,
size_t &total_bytes_read) {
static const size_t cache_line_size =
llvm::sys::Process::getPageSizeEstimate();
size_t bytes_read = 0;
size_t bytes_left = max_size;
addr_t curr_addr = addr;
size_t string_size;
char *curr_buffer = buffer;
total_bytes_read = 0;
Status status;
while (bytes_left > 0 && status.Success()) {
addr_t cache_line_bytes_left =
cache_line_size - (curr_addr % cache_line_size);
addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left);
status = ReadMemory(curr_addr, static_cast<void *>(curr_buffer),
bytes_to_read, bytes_read);
if (bytes_read == 0)
break;
void *str_end = std::memchr(curr_buffer, '\0', bytes_read);
if (str_end != nullptr) {
total_bytes_read =
static_cast<size_t>((static_cast<char *>(str_end) - buffer + 1));
status.Clear();
break;
}
total_bytes_read += bytes_read;
curr_buffer += bytes_read;
curr_addr += bytes_read;
bytes_left -= bytes_read;
}
string_size = total_bytes_read - 1;
// Make sure we return a null terminated string.
if (bytes_left == 0 && max_size > 0 && buffer[max_size - 1] != '\0') {
buffer[max_size - 1] = '\0';
total_bytes_read--;
}
if (!status.Success())
return status.ToError();
return llvm::StringRef(buffer, string_size);
}
lldb::StateType NativeProcessProtocol::GetState() const {
std::lock_guard<std::recursive_mutex> guard(m_state_mutex);
return m_state;
}
void NativeProcessProtocol::SetState(lldb::StateType state,
bool notify_delegates) {
std::lock_guard<std::recursive_mutex> guard(m_state_mutex);
if (state == m_state)
return;
m_state = state;
if (StateIsStoppedState(state, false)) {
++m_stop_id;
// Give process a chance to do any stop id bump processing, such as
// clearing cached data that is invalidated each time the process runs.
// Note if/when we support some threads running, we'll end up needing to
// manage this per thread and per process.
DoStopIDBumped(m_stop_id);
}
// Optionally notify delegates of the state change.
if (notify_delegates)
SynchronouslyNotifyProcessStateChanged(state);
}
uint32_t NativeProcessProtocol::GetStopID() const {
std::lock_guard<std::recursive_mutex> guard(m_state_mutex);
return m_stop_id;
}
void NativeProcessProtocol::DoStopIDBumped(uint32_t /* newBumpId */) {
// Default implementation does nothing.
}
NativeProcessProtocol::Factory::~Factory() = default;