lsan_common.cpp 31.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
//=-- lsan_common.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
// Implementation of common leak checking functionality.
//
//===----------------------------------------------------------------------===//

#include "lsan_common.h"

#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flag_parser.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_procmaps.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_suppressions.h"
#include "sanitizer_common/sanitizer_thread_registry.h"
#include "sanitizer_common/sanitizer_tls_get_addr.h"

#if CAN_SANITIZE_LEAKS
namespace __lsan {

// This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
// also to protect the global list of root regions.
BlockingMutex global_mutex(LINKER_INITIALIZED);

Flags lsan_flags;

void DisableCounterUnderflow() {
  if (common_flags()->detect_leaks) {
    Report("Unmatched call to __lsan_enable().\n");
    Die();
  }
}

void Flags::SetDefaults() {
#define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
#include "lsan_flags.inc"
#undef LSAN_FLAG
}

void RegisterLsanFlags(FlagParser *parser, Flags *f) {
#define LSAN_FLAG(Type, Name, DefaultValue, Description) \
  RegisterFlag(parser, #Name, Description, &f->Name);
#include "lsan_flags.inc"
#undef LSAN_FLAG
}

#define LOG_POINTERS(...)                           \
  do {                                              \
    if (flags()->log_pointers) Report(__VA_ARGS__); \
  } while (0)

#define LOG_THREADS(...)                           \
  do {                                             \
    if (flags()->log_threads) Report(__VA_ARGS__); \
  } while (0)

ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
static SuppressionContext *suppression_ctx = nullptr;
static const char kSuppressionLeak[] = "leak";
static const char *kSuppressionTypes[] = { kSuppressionLeak };
static const char kStdSuppressions[] =
#if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
  // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
  // definition.
  "leak:*pthread_exit*\n"
#endif  // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
#if SANITIZER_MAC
  // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
  "leak:*_os_trace*\n"
#endif
  // TLS leak in some glibc versions, described in
  // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
  "leak:*tls_get_addr*\n";

void InitializeSuppressions() {
  CHECK_EQ(nullptr, suppression_ctx);
  suppression_ctx = new (suppression_placeholder)
      SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
  suppression_ctx->ParseFromFile(flags()->suppressions);
  if (&__lsan_default_suppressions)
    suppression_ctx->Parse(__lsan_default_suppressions());
  suppression_ctx->Parse(kStdSuppressions);
}

static SuppressionContext *GetSuppressionContext() {
  CHECK(suppression_ctx);
  return suppression_ctx;
}

static InternalMmapVector<RootRegion> *root_regions;

InternalMmapVector<RootRegion> const *GetRootRegions() { return root_regions; }

void InitializeRootRegions() {
  CHECK(!root_regions);
  ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
  root_regions = new (placeholder) InternalMmapVector<RootRegion>();
}

const char *MaybeCallLsanDefaultOptions() {
  return (&__lsan_default_options) ? __lsan_default_options() : "";
}

void InitCommonLsan() {
  InitializeRootRegions();
  if (common_flags()->detect_leaks) {
    // Initialization which can fail or print warnings should only be done if
    // LSan is actually enabled.
    InitializeSuppressions();
    InitializePlatformSpecificModules();
  }
}

class Decorator: public __sanitizer::SanitizerCommonDecorator {
 public:
  Decorator() : SanitizerCommonDecorator() { }
  const char *Error() { return Red(); }
  const char *Leak() { return Blue(); }
};

static inline bool CanBeAHeapPointer(uptr p) {
  // Since our heap is located in mmap-ed memory, we can assume a sensible lower
  // bound on heap addresses.
  const uptr kMinAddress = 4 * 4096;
  if (p < kMinAddress) return false;
#if defined(__x86_64__)
  // Accept only canonical form user-space addresses.
  return ((p >> 47) == 0);
#elif defined(__mips64)
  return ((p >> 40) == 0);
#elif defined(__aarch64__)
  unsigned runtimeVMA =
    (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
  return ((p >> runtimeVMA) == 0);
#else
  return true;
#endif
}

// Scans the memory range, looking for byte patterns that point into allocator
// chunks. Marks those chunks with |tag| and adds them to |frontier|.
// There are two usage modes for this function: finding reachable chunks
// (|tag| = kReachable) and finding indirectly leaked chunks
// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
// so |frontier| = 0.
void ScanRangeForPointers(uptr begin, uptr end,
                          Frontier *frontier,
                          const char *region_type, ChunkTag tag) {
  CHECK(tag == kReachable || tag == kIndirectlyLeaked);
  const uptr alignment = flags()->pointer_alignment();
  LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
  uptr pp = begin;
  if (pp % alignment)
    pp = pp + alignment - pp % alignment;
  for (; pp + sizeof(void *) <= end; pp += alignment) {
    void *p = *reinterpret_cast<void **>(pp);
    if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
    uptr chunk = PointsIntoChunk(p);
    if (!chunk) continue;
    // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
    if (chunk == begin) continue;
    LsanMetadata m(chunk);
    if (m.tag() == kReachable || m.tag() == kIgnored) continue;

    // Do this check relatively late so we can log only the interesting cases.
    if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
      LOG_POINTERS(
          "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
          "%zu.\n",
          pp, p, chunk, chunk + m.requested_size(), m.requested_size());
      continue;
    }

    m.set_tag(tag);
    LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
                 chunk, chunk + m.requested_size(), m.requested_size());
    if (frontier)
      frontier->push_back(chunk);
  }
}

// Scans a global range for pointers
void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
  uptr allocator_begin = 0, allocator_end = 0;
  GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
  if (begin <= allocator_begin && allocator_begin < end) {
    CHECK_LE(allocator_begin, allocator_end);
    CHECK_LE(allocator_end, end);
    if (begin < allocator_begin)
      ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
                           kReachable);
    if (allocator_end < end)
      ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
  } else {
    ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
  }
}

void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
  Frontier *frontier = reinterpret_cast<Frontier *>(arg);
  ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
}

// Scans thread data (stacks and TLS) for heap pointers.
static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
                           Frontier *frontier) {
  InternalMmapVector<uptr> registers(suspended_threads.RegisterCount());
  uptr registers_begin = reinterpret_cast<uptr>(registers.data());
  uptr registers_end =
      reinterpret_cast<uptr>(registers.data() + registers.size());
  for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
    tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
    LOG_THREADS("Processing thread %d.\n", os_id);
    uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
    DTLS *dtls;
    bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
                                              &tls_begin, &tls_end,
                                              &cache_begin, &cache_end, &dtls);
    if (!thread_found) {
      // If a thread can't be found in the thread registry, it's probably in the
      // process of destruction. Log this event and move on.
      LOG_THREADS("Thread %d not found in registry.\n", os_id);
      continue;
    }
    uptr sp;
    PtraceRegistersStatus have_registers =
        suspended_threads.GetRegistersAndSP(i, registers.data(), &sp);
    if (have_registers != REGISTERS_AVAILABLE) {
      Report("Unable to get registers from thread %d.\n", os_id);
      // If unable to get SP, consider the entire stack to be reachable unless
      // GetRegistersAndSP failed with ESRCH.
      if (have_registers == REGISTERS_UNAVAILABLE_FATAL) continue;
      sp = stack_begin;
    }

    if (flags()->use_registers && have_registers)
      ScanRangeForPointers(registers_begin, registers_end, frontier,
                           "REGISTERS", kReachable);

    if (flags()->use_stacks) {
      LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
      if (sp < stack_begin || sp >= stack_end) {
        // SP is outside the recorded stack range (e.g. the thread is running a
        // signal handler on alternate stack, or swapcontext was used).
        // Again, consider the entire stack range to be reachable.
        LOG_THREADS("WARNING: stack pointer not in stack range.\n");
        uptr page_size = GetPageSizeCached();
        int skipped = 0;
        while (stack_begin < stack_end &&
               !IsAccessibleMemoryRange(stack_begin, 1)) {
          skipped++;
          stack_begin += page_size;
        }
        LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
                    skipped, stack_begin, stack_end);
      } else {
        // Shrink the stack range to ignore out-of-scope values.
        stack_begin = sp;
      }
      ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
                           kReachable);
      ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
    }

    if (flags()->use_tls) {
      if (tls_begin) {
        LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
        // If the tls and cache ranges don't overlap, scan full tls range,
        // otherwise, only scan the non-overlapping portions
        if (cache_begin == cache_end || tls_end < cache_begin ||
            tls_begin > cache_end) {
          ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
        } else {
          if (tls_begin < cache_begin)
            ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
                                 kReachable);
          if (tls_end > cache_end)
            ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
                                 kReachable);
        }
      }
      if (dtls && !DTLSInDestruction(dtls)) {
        for (uptr j = 0; j < dtls->dtv_size; ++j) {
          uptr dtls_beg = dtls->dtv[j].beg;
          uptr dtls_end = dtls_beg + dtls->dtv[j].size;
          if (dtls_beg < dtls_end) {
            LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end);
            ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
                                 kReachable);
          }
        }
      } else {
        // We are handling a thread with DTLS under destruction. Log about
        // this and continue.
        LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id);
      }
    }
  }
}

void ScanRootRegion(Frontier *frontier, const RootRegion &root_region,
                    uptr region_begin, uptr region_end, bool is_readable) {
  uptr intersection_begin = Max(root_region.begin, region_begin);
  uptr intersection_end = Min(region_end, root_region.begin + root_region.size);
  if (intersection_begin >= intersection_end) return;
  LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
               root_region.begin, root_region.begin + root_region.size,
               region_begin, region_end,
               is_readable ? "readable" : "unreadable");
  if (is_readable)
    ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT",
                         kReachable);
}

static void ProcessRootRegion(Frontier *frontier,
                              const RootRegion &root_region) {
  MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
  MemoryMappedSegment segment;
  while (proc_maps.Next(&segment)) {
    ScanRootRegion(frontier, root_region, segment.start, segment.end,
                   segment.IsReadable());
  }
}

// Scans root regions for heap pointers.
static void ProcessRootRegions(Frontier *frontier) {
  if (!flags()->use_root_regions) return;
  CHECK(root_regions);
  for (uptr i = 0; i < root_regions->size(); i++) {
    ProcessRootRegion(frontier, (*root_regions)[i]);
  }
}

static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
  while (frontier->size()) {
    uptr next_chunk = frontier->back();
    frontier->pop_back();
    LsanMetadata m(next_chunk);
    ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
                         "HEAP", tag);
  }
}

// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
// which are reachable from it as indirectly leaked.
static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
  chunk = GetUserBegin(chunk);
  LsanMetadata m(chunk);
  if (m.allocated() && m.tag() != kReachable) {
    ScanRangeForPointers(chunk, chunk + m.requested_size(),
                         /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
  }
}

// ForEachChunk callback. If chunk is marked as ignored, adds its address to
// frontier.
static void CollectIgnoredCb(uptr chunk, void *arg) {
  CHECK(arg);
  chunk = GetUserBegin(chunk);
  LsanMetadata m(chunk);
  if (m.allocated() && m.tag() == kIgnored) {
    LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
                 chunk, chunk + m.requested_size(), m.requested_size());
    reinterpret_cast<Frontier *>(arg)->push_back(chunk);
  }
}

static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
  CHECK(stack_id);
  StackTrace stack = map->Get(stack_id);
  // The top frame is our malloc/calloc/etc. The next frame is the caller.
  if (stack.size >= 2)
    return stack.trace[1];
  return 0;
}

struct InvalidPCParam {
  Frontier *frontier;
  StackDepotReverseMap *stack_depot_reverse_map;
  bool skip_linker_allocations;
};

// ForEachChunk callback. If the caller pc is invalid or is within the linker,
// mark as reachable. Called by ProcessPlatformSpecificAllocations.
static void MarkInvalidPCCb(uptr chunk, void *arg) {
  CHECK(arg);
  InvalidPCParam *param = reinterpret_cast<InvalidPCParam *>(arg);
  chunk = GetUserBegin(chunk);
  LsanMetadata m(chunk);
  if (m.allocated() && m.tag() != kReachable && m.tag() != kIgnored) {
    u32 stack_id = m.stack_trace_id();
    uptr caller_pc = 0;
    if (stack_id > 0)
      caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
    // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
    // it as reachable, as we can't properly report its allocation stack anyway.
    if (caller_pc == 0 || (param->skip_linker_allocations &&
                           GetLinker()->containsAddress(caller_pc))) {
      m.set_tag(kReachable);
      param->frontier->push_back(chunk);
    }
  }
}

// On Linux, treats all chunks allocated from ld-linux.so as reachable, which
// covers dynamically allocated TLS blocks, internal dynamic loader's loaded
// modules accounting etc.
// Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
// They are allocated with a __libc_memalign() call in allocate_and_init()
// (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
// blocks, but we can make sure they come from our own allocator by intercepting
// __libc_memalign(). On top of that, there is no easy way to reach them. Their
// addresses are stored in a dynamically allocated array (the DTV) which is
// referenced from the static TLS. Unfortunately, we can't just rely on the DTV
// being reachable from the static TLS, and the dynamic TLS being reachable from
// the DTV. This is because the initial DTV is allocated before our interception
// mechanism kicks in, and thus we don't recognize it as allocated memory. We
// can't special-case it either, since we don't know its size.
// Our solution is to include in the root set all allocations made from
// ld-linux.so (which is where allocate_and_init() is implemented). This is
// guaranteed to include all dynamic TLS blocks (and possibly other allocations
// which we don't care about).
// On all other platforms, this simply checks to ensure that the caller pc is
// valid before reporting chunks as leaked.
void ProcessPC(Frontier *frontier) {
  StackDepotReverseMap stack_depot_reverse_map;
  InvalidPCParam arg;
  arg.frontier = frontier;
  arg.stack_depot_reverse_map = &stack_depot_reverse_map;
  arg.skip_linker_allocations =
      flags()->use_tls && flags()->use_ld_allocations && GetLinker() != nullptr;
  ForEachChunk(MarkInvalidPCCb, &arg);
}

// Sets the appropriate tag on each chunk.
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
  // Holds the flood fill frontier.
  Frontier frontier;

  ForEachChunk(CollectIgnoredCb, &frontier);
  ProcessGlobalRegions(&frontier);
  ProcessThreads(suspended_threads, &frontier);
  ProcessRootRegions(&frontier);
  FloodFillTag(&frontier, kReachable);

  CHECK_EQ(0, frontier.size());
  ProcessPC(&frontier);

  // The check here is relatively expensive, so we do this in a separate flood
  // fill. That way we can skip the check for chunks that are reachable
  // otherwise.
  LOG_POINTERS("Processing platform-specific allocations.\n");
  ProcessPlatformSpecificAllocations(&frontier);
  FloodFillTag(&frontier, kReachable);

  // Iterate over leaked chunks and mark those that are reachable from other
  // leaked chunks.
  LOG_POINTERS("Scanning leaked chunks.\n");
  ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
}

// ForEachChunk callback. Resets the tags to pre-leak-check state.
static void ResetTagsCb(uptr chunk, void *arg) {
  (void)arg;
  chunk = GetUserBegin(chunk);
  LsanMetadata m(chunk);
  if (m.allocated() && m.tag() != kIgnored)
    m.set_tag(kDirectlyLeaked);
}

static void PrintStackTraceById(u32 stack_trace_id) {
  CHECK(stack_trace_id);
  StackDepotGet(stack_trace_id).Print();
}

// ForEachChunk callback. Aggregates information about unreachable chunks into
// a LeakReport.
static void CollectLeaksCb(uptr chunk, void *arg) {
  CHECK(arg);
  LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
  chunk = GetUserBegin(chunk);
  LsanMetadata m(chunk);
  if (!m.allocated()) return;
  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
    u32 resolution = flags()->resolution;
    u32 stack_trace_id = 0;
    if (resolution > 0) {
      StackTrace stack = StackDepotGet(m.stack_trace_id());
      stack.size = Min(stack.size, resolution);
      stack_trace_id = StackDepotPut(stack);
    } else {
      stack_trace_id = m.stack_trace_id();
    }
    leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
                                m.tag());
  }
}

static void PrintMatchedSuppressions() {
  InternalMmapVector<Suppression *> matched;
  GetSuppressionContext()->GetMatched(&matched);
  if (!matched.size())
    return;
  const char *line = "-----------------------------------------------------";
  Printf("%s\n", line);
  Printf("Suppressions used:\n");
  Printf("  count      bytes template\n");
  for (uptr i = 0; i < matched.size(); i++)
    Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
        &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
  Printf("%s\n\n", line);
}

struct CheckForLeaksParam {
  bool success;
  LeakReport leak_report;
};

static void ReportIfNotSuspended(ThreadContextBase *tctx, void *arg) {
  const InternalMmapVector<tid_t> &suspended_threads =
      *(const InternalMmapVector<tid_t> *)arg;
  if (tctx->status == ThreadStatusRunning) {
    uptr i = InternalLowerBound(suspended_threads, 0, suspended_threads.size(),
                                tctx->os_id, CompareLess<int>());
    if (i >= suspended_threads.size() || suspended_threads[i] != tctx->os_id)
      Report("Running thread %d was not suspended. False leaks are possible.\n",
             tctx->os_id);
  }
}

static void ReportUnsuspendedThreads(
    const SuspendedThreadsList &suspended_threads) {
  InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
  for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
    threads[i] = suspended_threads.GetThreadID(i);

  Sort(threads.data(), threads.size());

  GetThreadRegistryLocked()->RunCallbackForEachThreadLocked(
      &ReportIfNotSuspended, &threads);
}

static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
                                  void *arg) {
  CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
  CHECK(param);
  CHECK(!param->success);
  ReportUnsuspendedThreads(suspended_threads);
  ClassifyAllChunks(suspended_threads);
  ForEachChunk(CollectLeaksCb, &param->leak_report);
  // Clean up for subsequent leak checks. This assumes we did not overwrite any
  // kIgnored tags.
  ForEachChunk(ResetTagsCb, nullptr);
  param->success = true;
}

static bool CheckForLeaks() {
  if (&__lsan_is_turned_off && __lsan_is_turned_off())
      return false;
  EnsureMainThreadIDIsCorrect();
  CheckForLeaksParam param;
  param.success = false;
  LockStuffAndStopTheWorld(CheckForLeaksCallback, &param);

  if (!param.success) {
    Report("LeakSanitizer has encountered a fatal error.\n");
    Report(
        "HINT: For debugging, try setting environment variable "
        "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
    Report(
        "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n");
    Die();
  }
  param.leak_report.ApplySuppressions();
  uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
  if (unsuppressed_count > 0) {
    Decorator d;
    Printf("\n"
           "================================================================="
           "\n");
    Printf("%s", d.Error());
    Report("ERROR: LeakSanitizer: detected memory leaks\n");
    Printf("%s", d.Default());
    param.leak_report.ReportTopLeaks(flags()->max_leaks);
  }
  if (common_flags()->print_suppressions)
    PrintMatchedSuppressions();
  if (unsuppressed_count > 0) {
    param.leak_report.PrintSummary();
    return true;
  }
  return false;
}

static bool has_reported_leaks = false;
bool HasReportedLeaks() { return has_reported_leaks; }

void DoLeakCheck() {
  BlockingMutexLock l(&global_mutex);
  static bool already_done;
  if (already_done) return;
  already_done = true;
  has_reported_leaks = CheckForLeaks();
  if (has_reported_leaks) HandleLeaks();
}

static int DoRecoverableLeakCheck() {
  BlockingMutexLock l(&global_mutex);
  bool have_leaks = CheckForLeaks();
  return have_leaks ? 1 : 0;
}

void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }

static Suppression *GetSuppressionForAddr(uptr addr) {
  Suppression *s = nullptr;

  // Suppress by module name.
  SuppressionContext *suppressions = GetSuppressionContext();
  if (const char *module_name =
          Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
    if (suppressions->Match(module_name, kSuppressionLeak, &s))
      return s;

  // Suppress by file or function name.
  SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
  for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
    if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
        suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
      break;
    }
  }
  frames->ClearAll();
  return s;
}

static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
  StackTrace stack = StackDepotGet(stack_trace_id);
  for (uptr i = 0; i < stack.size; i++) {
    Suppression *s = GetSuppressionForAddr(
        StackTrace::GetPreviousInstructionPc(stack.trace[i]));
    if (s) return s;
  }
  return nullptr;
}

///// LeakReport implementation. /////

// A hard limit on the number of distinct leaks, to avoid quadratic complexity
// in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
// in real-world applications.
// FIXME: Get rid of this limit by changing the implementation of LeakReport to
// use a hash table.
const uptr kMaxLeaksConsidered = 5000;

void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
                                uptr leaked_size, ChunkTag tag) {
  CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
  bool is_directly_leaked = (tag == kDirectlyLeaked);
  uptr i;
  for (i = 0; i < leaks_.size(); i++) {
    if (leaks_[i].stack_trace_id == stack_trace_id &&
        leaks_[i].is_directly_leaked == is_directly_leaked) {
      leaks_[i].hit_count++;
      leaks_[i].total_size += leaked_size;
      break;
    }
  }
  if (i == leaks_.size()) {
    if (leaks_.size() == kMaxLeaksConsidered) return;
    Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
                  is_directly_leaked, /* is_suppressed */ false };
    leaks_.push_back(leak);
  }
  if (flags()->report_objects) {
    LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
    leaked_objects_.push_back(obj);
  }
}

static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
  if (leak1.is_directly_leaked == leak2.is_directly_leaked)
    return leak1.total_size > leak2.total_size;
  else
    return leak1.is_directly_leaked;
}

void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
  CHECK(leaks_.size() <= kMaxLeaksConsidered);
  Printf("\n");
  if (leaks_.size() == kMaxLeaksConsidered)
    Printf("Too many leaks! Only the first %zu leaks encountered will be "
           "reported.\n",
           kMaxLeaksConsidered);

  uptr unsuppressed_count = UnsuppressedLeakCount();
  if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
    Printf("The %zu top leak(s):\n", num_leaks_to_report);
  Sort(leaks_.data(), leaks_.size(), &LeakComparator);
  uptr leaks_reported = 0;
  for (uptr i = 0; i < leaks_.size(); i++) {
    if (leaks_[i].is_suppressed) continue;
    PrintReportForLeak(i);
    leaks_reported++;
    if (leaks_reported == num_leaks_to_report) break;
  }
  if (leaks_reported < unsuppressed_count) {
    uptr remaining = unsuppressed_count - leaks_reported;
    Printf("Omitting %zu more leak(s).\n", remaining);
  }
}

void LeakReport::PrintReportForLeak(uptr index) {
  Decorator d;
  Printf("%s", d.Leak());
  Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
         leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
         leaks_[index].total_size, leaks_[index].hit_count);
  Printf("%s", d.Default());

  PrintStackTraceById(leaks_[index].stack_trace_id);

  if (flags()->report_objects) {
    Printf("Objects leaked above:\n");
    PrintLeakedObjectsForLeak(index);
    Printf("\n");
  }
}

void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
  u32 leak_id = leaks_[index].id;
  for (uptr j = 0; j < leaked_objects_.size(); j++) {
    if (leaked_objects_[j].leak_id == leak_id)
      Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
             leaked_objects_[j].size);
  }
}

void LeakReport::PrintSummary() {
  CHECK(leaks_.size() <= kMaxLeaksConsidered);
  uptr bytes = 0, allocations = 0;
  for (uptr i = 0; i < leaks_.size(); i++) {
      if (leaks_[i].is_suppressed) continue;
      bytes += leaks_[i].total_size;
      allocations += leaks_[i].hit_count;
  }
  InternalScopedString summary(kMaxSummaryLength);
  summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
                 allocations);
  ReportErrorSummary(summary.data());
}

void LeakReport::ApplySuppressions() {
  for (uptr i = 0; i < leaks_.size(); i++) {
    Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
    if (s) {
      s->weight += leaks_[i].total_size;
      atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
          leaks_[i].hit_count);
      leaks_[i].is_suppressed = true;
    }
  }
}

uptr LeakReport::UnsuppressedLeakCount() {
  uptr result = 0;
  for (uptr i = 0; i < leaks_.size(); i++)
    if (!leaks_[i].is_suppressed) result++;
  return result;
}

} // namespace __lsan
#else // CAN_SANITIZE_LEAKS
namespace __lsan {
void InitCommonLsan() { }
void DoLeakCheck() { }
void DoRecoverableLeakCheckVoid() { }
void DisableInThisThread() { }
void EnableInThisThread() { }
}
#endif // CAN_SANITIZE_LEAKS

using namespace __lsan;

extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_ignore_object(const void *p) {
#if CAN_SANITIZE_LEAKS
  if (!common_flags()->detect_leaks)
    return;
  // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
  // locked.
  BlockingMutexLock l(&global_mutex);
  IgnoreObjectResult res = IgnoreObjectLocked(p);
  if (res == kIgnoreObjectInvalid)
    VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
  if (res == kIgnoreObjectAlreadyIgnored)
    VReport(1, "__lsan_ignore_object(): "
           "heap object at %p is already being ignored\n", p);
  if (res == kIgnoreObjectSuccess)
    VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
#endif // CAN_SANITIZE_LEAKS
}

SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_register_root_region(const void *begin, uptr size) {
#if CAN_SANITIZE_LEAKS
  BlockingMutexLock l(&global_mutex);
  CHECK(root_regions);
  RootRegion region = {reinterpret_cast<uptr>(begin), size};
  root_regions->push_back(region);
  VReport(1, "Registered root region at %p of size %llu\n", begin, size);
#endif // CAN_SANITIZE_LEAKS
}

SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_unregister_root_region(const void *begin, uptr size) {
#if CAN_SANITIZE_LEAKS
  BlockingMutexLock l(&global_mutex);
  CHECK(root_regions);
  bool removed = false;
  for (uptr i = 0; i < root_regions->size(); i++) {
    RootRegion region = (*root_regions)[i];
    if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) {
      removed = true;
      uptr last_index = root_regions->size() - 1;
      (*root_regions)[i] = (*root_regions)[last_index];
      root_regions->pop_back();
      VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
      break;
    }
  }
  if (!removed) {
    Report(
        "__lsan_unregister_root_region(): region at %p of size %llu has not "
        "been registered.\n",
        begin, size);
    Die();
  }
#endif // CAN_SANITIZE_LEAKS
}

SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_disable() {
#if CAN_SANITIZE_LEAKS
  __lsan::DisableInThisThread();
#endif
}

SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_enable() {
#if CAN_SANITIZE_LEAKS
  __lsan::EnableInThisThread();
#endif
}

SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_do_leak_check() {
#if CAN_SANITIZE_LEAKS
  if (common_flags()->detect_leaks)
    __lsan::DoLeakCheck();
#endif // CAN_SANITIZE_LEAKS
}

SANITIZER_INTERFACE_ATTRIBUTE
int __lsan_do_recoverable_leak_check() {
#if CAN_SANITIZE_LEAKS
  if (common_flags()->detect_leaks)
    return __lsan::DoRecoverableLeakCheck();
#endif // CAN_SANITIZE_LEAKS
  return 0;
}

#if !SANITIZER_SUPPORTS_WEAK_HOOKS
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
const char * __lsan_default_options() {
  return "";
}

SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
int __lsan_is_turned_off() {
  return 0;
}

SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
const char *__lsan_default_suppressions() {
  return "";
}
#endif
} // extern "C"