LayoutPass.cpp 18.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
//===-- ReaderWriter/MachO/LayoutPass.cpp - Layout atoms ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "LayoutPass.h"
#include "lld/Core/Instrumentation.h"
#include "lld/Core/PassManager.h"
#include "lld/ReaderWriter/MachOLinkingContext.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Parallel.h"
#include <algorithm>
#include <set>
#include <utility>

using namespace lld;

#define DEBUG_TYPE "LayoutPass"

namespace lld {
namespace mach_o {

static bool compareAtoms(const LayoutPass::SortKey &,
                         const LayoutPass::SortKey &,
                         LayoutPass::SortOverride customSorter);

#ifndef NDEBUG
// Return "reason (leftval, rightval)"
static std::string formatReason(StringRef reason, int leftVal, int rightVal) {
  return (Twine(reason) + " (" + Twine(leftVal) + ", " + Twine(rightVal) + ")")
      .str();
}

// Less-than relationship of two atoms must be transitive, which is, if a < b
// and b < c, a < c must be true. This function checks the transitivity by
// checking the sort results.
static void checkTransitivity(std::vector<LayoutPass::SortKey> &vec,
                              LayoutPass::SortOverride customSorter) {
  for (auto i = vec.begin(), e = vec.end(); (i + 1) != e; ++i) {
    for (auto j = i + 1; j != e; ++j) {
      assert(compareAtoms(*i, *j, customSorter));
      assert(!compareAtoms(*j, *i, customSorter));
    }
  }
}

// Helper functions to check follow-on graph.
typedef llvm::DenseMap<const DefinedAtom *, const DefinedAtom *> AtomToAtomT;

static std::string atomToDebugString(const Atom *atom) {
  const DefinedAtom *definedAtom = dyn_cast<DefinedAtom>(atom);
  std::string str;
  llvm::raw_string_ostream s(str);
  if (definedAtom->name().empty())
    s << "<anonymous " << definedAtom << ">";
  else
    s << definedAtom->name();
  s << " in ";
  if (definedAtom->customSectionName().empty())
    s << "<anonymous>";
  else
    s << definedAtom->customSectionName();
  s.flush();
  return str;
}

static void showCycleDetectedError(const Registry &registry,
                                   AtomToAtomT &followOnNexts,
                                   const DefinedAtom *atom) {
  const DefinedAtom *start = atom;
  llvm::dbgs() << "There's a cycle in a follow-on chain!\n";
  do {
    llvm::dbgs() << "  " << atomToDebugString(atom) << "\n";
    for (const Reference *ref : *atom) {
      StringRef kindValStr;
      if (!registry.referenceKindToString(ref->kindNamespace(), ref->kindArch(),
                                          ref->kindValue(), kindValStr)) {
        kindValStr = "<unknown>";
      }
      llvm::dbgs() << "    " << kindValStr
                   << ": " << atomToDebugString(ref->target()) << "\n";
    }
    atom = followOnNexts[atom];
  } while (atom != start);
  llvm::report_fatal_error("Cycle detected");
}

/// Exit if there's a cycle in a followon chain reachable from the
/// given root atom. Uses the tortoise and hare algorithm to detect a
/// cycle.
static void checkNoCycleInFollowonChain(const Registry &registry,
                                        AtomToAtomT &followOnNexts,
                                        const DefinedAtom *root) {
  const DefinedAtom *tortoise = root;
  const DefinedAtom *hare = followOnNexts[root];
  while (true) {
    if (!tortoise || !hare)
      return;
    if (tortoise == hare)
      showCycleDetectedError(registry, followOnNexts, tortoise);
    tortoise = followOnNexts[tortoise];
    hare = followOnNexts[followOnNexts[hare]];
  }
}

static void checkReachabilityFromRoot(AtomToAtomT &followOnRoots,
                                      const DefinedAtom *atom) {
  if (!atom) return;
  auto i = followOnRoots.find(atom);
  if (i == followOnRoots.end()) {
    llvm_unreachable(((Twine("Atom <") + atomToDebugString(atom) +
                       "> has no follow-on root!"))
                         .str()
                         .c_str());
  }
  const DefinedAtom *ap = i->second;
  while (true) {
    const DefinedAtom *next = followOnRoots[ap];
    if (!next) {
      llvm_unreachable((Twine("Atom <" + atomToDebugString(atom) +
                              "> is not reachable from its root!"))
                           .str()
                           .c_str());
    }
    if (next == ap)
      return;
    ap = next;
  }
}

static void printDefinedAtoms(const File::AtomRange<DefinedAtom> &atomRange) {
  for (const DefinedAtom *atom : atomRange) {
    llvm::dbgs() << "  file=" << atom->file().path()
                 << ", name=" << atom->name()
                 << ", size=" << atom->size()
                 << ", type=" << atom->contentType()
                 << ", ordinal=" << atom->ordinal()
                 << "\n";
  }
}

/// Verify that the followon chain is sane. Should not be called in
/// release binary.
void LayoutPass::checkFollowonChain(const File::AtomRange<DefinedAtom> &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::checkFollowonChain");

  // Verify that there's no cycle in follow-on chain.
  std::set<const DefinedAtom *> roots;
  for (const auto &ai : _followOnRoots)
    roots.insert(ai.second);
  for (const DefinedAtom *root : roots)
    checkNoCycleInFollowonChain(_registry, _followOnNexts, root);

  // Verify that all the atoms in followOnNexts have references to
  // their roots.
  for (const auto &ai : _followOnNexts) {
    checkReachabilityFromRoot(_followOnRoots, ai.first);
    checkReachabilityFromRoot(_followOnRoots, ai.second);
  }
}
#endif // #ifndef NDEBUG

/// The function compares atoms by sorting atoms in the following order
/// a) Sorts atoms by their ordinal overrides (layout-after/ingroup)
/// b) Sorts atoms by their permissions
/// c) Sorts atoms by their content
/// d) Sorts atoms by custom sorter
/// e) Sorts atoms on how they appear using File Ordinality
/// f) Sorts atoms on how they appear within the File
static bool compareAtomsSub(const LayoutPass::SortKey &lc,
                            const LayoutPass::SortKey &rc,
                            LayoutPass::SortOverride customSorter,
                            std::string &reason) {
  const DefinedAtom *left = lc._atom.get();
  const DefinedAtom *right = rc._atom.get();
  if (left == right) {
    reason = "same";
    return false;
  }

  // Find the root of the chain if it is a part of a follow-on chain.
  const DefinedAtom *leftRoot = lc._root;
  const DefinedAtom *rightRoot = rc._root;

  // Sort atoms by their ordinal overrides only if they fall in the same
  // chain.
  if (leftRoot == rightRoot) {
    LLVM_DEBUG(reason = formatReason("override", lc._override, rc._override));
    return lc._override < rc._override;
  }

  // Sort same permissions together.
  DefinedAtom::ContentPermissions leftPerms = leftRoot->permissions();
  DefinedAtom::ContentPermissions rightPerms = rightRoot->permissions();

  if (leftPerms != rightPerms) {
    LLVM_DEBUG(
        reason = formatReason("contentPerms", (int)leftPerms, (int)rightPerms));
    return leftPerms < rightPerms;
  }

  // Sort same content types together.
  DefinedAtom::ContentType leftType = leftRoot->contentType();
  DefinedAtom::ContentType rightType = rightRoot->contentType();

  if (leftType != rightType) {
    LLVM_DEBUG(reason =
                   formatReason("contentType", (int)leftType, (int)rightType));
    return leftType < rightType;
  }

  // Use custom sorter if supplied.
  if (customSorter) {
    bool leftBeforeRight;
    if (customSorter(leftRoot, rightRoot, leftBeforeRight))
      return leftBeforeRight;
  }

  // Sort by .o order.
  const File *leftFile = &leftRoot->file();
  const File *rightFile = &rightRoot->file();

  if (leftFile != rightFile) {
    LLVM_DEBUG(reason = formatReason(".o order", (int)leftFile->ordinal(),
                                     (int)rightFile->ordinal()));
    return leftFile->ordinal() < rightFile->ordinal();
  }

  // Sort by atom order with .o file.
  uint64_t leftOrdinal = leftRoot->ordinal();
  uint64_t rightOrdinal = rightRoot->ordinal();

  if (leftOrdinal != rightOrdinal) {
    LLVM_DEBUG(reason = formatReason("ordinal", (int)leftRoot->ordinal(),
                                     (int)rightRoot->ordinal()));
    return leftOrdinal < rightOrdinal;
  }

  llvm::errs() << "Unordered: <" << left->name() << "> <" << right->name()
               << ">\n";
  llvm_unreachable("Atoms with Same Ordinal!");
}

static bool compareAtoms(const LayoutPass::SortKey &lc,
                         const LayoutPass::SortKey &rc,
                         LayoutPass::SortOverride customSorter) {
  std::string reason;
  bool result = compareAtomsSub(lc, rc, customSorter, reason);
  LLVM_DEBUG({
    StringRef comp = result ? "<" : ">=";
    llvm::dbgs() << "Layout: '" << lc._atom.get()->name()
                 << "' " << comp << " '"
                 << rc._atom.get()->name() << "' (" << reason << ")\n";
  });
  return result;
}

LayoutPass::LayoutPass(const Registry &registry, SortOverride sorter)
    : _registry(registry), _customSorter(std::move(sorter)) {}

// Returns the atom immediately followed by the given atom in the followon
// chain.
const DefinedAtom *LayoutPass::findAtomFollowedBy(
    const DefinedAtom *targetAtom) {
  // Start from the beginning of the chain and follow the chain until
  // we find the targetChain.
  const DefinedAtom *atom = _followOnRoots[targetAtom];
  while (true) {
    const DefinedAtom *prevAtom = atom;
    AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
    // The target atom must be in the chain of its root.
    assert(targetFollowOnAtomsIter != _followOnNexts.end());
    atom = targetFollowOnAtomsIter->second;
    if (atom == targetAtom)
      return prevAtom;
  }
}

// Check if all the atoms followed by the given target atom are of size zero.
// When this method is called, an atom being added is not of size zero and
// will be added to the head of the followon chain. All the atoms between the
// atom and the targetAtom (specified by layout-after) need to be of size zero
// in this case. Otherwise the desired layout is impossible.
bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) {
  const DefinedAtom *atom = _followOnRoots[targetAtom];
  while (true) {
    if (atom == targetAtom)
      return true;
    if (atom->size() != 0)
      // TODO: print warning that an impossible layout is being desired by the
      // user.
      return false;
    AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
    // The target atom must be in the chain of its root.
    assert(targetFollowOnAtomsIter != _followOnNexts.end());
    atom = targetFollowOnAtomsIter->second;
  }
}

// Set the root of all atoms in targetAtom's chain to the given root.
void LayoutPass::setChainRoot(const DefinedAtom *targetAtom,
                              const DefinedAtom *root) {
  // Walk through the followon chain and override each node's root.
  while (true) {
    _followOnRoots[targetAtom] = root;
    AtomToAtomT::iterator targetFollowOnAtomsIter =
        _followOnNexts.find(targetAtom);
    if (targetFollowOnAtomsIter == _followOnNexts.end())
      return;
    targetAtom = targetFollowOnAtomsIter->second;
  }
}

/// This pass builds the followon tables described by two DenseMaps
/// followOnRoots and followonNexts.
/// The followOnRoots map contains a mapping of a DefinedAtom to its root
/// The followOnNexts map contains a mapping of what DefinedAtom follows the
/// current Atom
/// The algorithm follows a very simple approach
/// a) If the atom is first seen, then make that as the root atom
/// b) The targetAtom which this Atom contains, has the root thats set to the
///    root of the current atom
/// c) If the targetAtom is part of a different tree and the root of the
///    targetAtom is itself, Chain all the atoms that are contained in the tree
///    to the current Tree
/// d) If the targetAtom is part of a different chain and the root of the
///    targetAtom until the targetAtom has all atoms of size 0, then chain the
///    targetAtoms and its tree to the current chain
void LayoutPass::buildFollowOnTable(const File::AtomRange<DefinedAtom> &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable");
  // Set the initial size of the followon and the followonNext hash to the
  // number of atoms that we have.
  _followOnRoots.reserve(range.size());
  _followOnNexts.reserve(range.size());
  for (const DefinedAtom *ai : range) {
    for (const Reference *r : *ai) {
      if (r->kindNamespace() != lld::Reference::KindNamespace::all ||
          r->kindValue() != lld::Reference::kindLayoutAfter)
        continue;
      const DefinedAtom *targetAtom = dyn_cast<DefinedAtom>(r->target());
      _followOnNexts[ai] = targetAtom;

      // If we find a followon for the first time, let's make that atom as the
      // root atom.
      if (_followOnRoots.count(ai) == 0)
        _followOnRoots[ai] = ai;

      auto iter = _followOnRoots.find(targetAtom);
      if (iter == _followOnRoots.end()) {
        // If the targetAtom is not a root of any chain, let's make the root of
        // the targetAtom to the root of the current chain.

        // The expression m[i] = m[j] where m is a DenseMap and i != j is not
        // safe. m[j] returns a reference, which would be invalidated when a
        // rehashing occurs. If rehashing occurs to make room for m[i], m[j]
        // becomes invalid, and that invalid reference would be used as the RHS
        // value of the expression.
        // Copy the value to workaround.
        const DefinedAtom *tmp = _followOnRoots[ai];
        _followOnRoots[targetAtom] = tmp;
        continue;
      }
      if (iter->second == targetAtom) {
        // If the targetAtom is the root of a chain, the chain becomes part of
        // the current chain. Rewrite the subchain's root to the current
        // chain's root.
        setChainRoot(targetAtom, _followOnRoots[ai]);
        continue;
      }
      // The targetAtom is already a part of a chain. If the current atom is
      // of size zero, we can insert it in the middle of the chain just
      // before the target atom, while not breaking other atom's followon
      // relationships. If it's not, we can only insert the current atom at
      // the beginning of the chain. All the atoms followed by the target
      // atom must be of size zero in that case to satisfy the followon
      // relationships.
      size_t currentAtomSize = ai->size();
      if (currentAtomSize == 0) {
        const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom);
        _followOnNexts[targetPrevAtom] = ai;
        const DefinedAtom *tmp = _followOnRoots[targetPrevAtom];
        _followOnRoots[ai] = tmp;
        continue;
      }
      if (!checkAllPrevAtomsZeroSize(targetAtom))
        break;
      _followOnNexts[ai] = _followOnRoots[targetAtom];
      setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]);
    }
  }
}

/// Build an ordinal override map by traversing the followon chain, and
/// assigning ordinals to each atom, if the atoms have their ordinals
/// already assigned skip the atom and move to the next. This is the
/// main map thats used to sort the atoms while comparing two atoms together
void
LayoutPass::buildOrdinalOverrideMap(const File::AtomRange<DefinedAtom> &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap");
  uint64_t index = 0;
  for (const DefinedAtom *ai : range) {
    const DefinedAtom *atom = ai;
    if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end())
      continue;
    AtomToAtomT::iterator start = _followOnRoots.find(atom);
    if (start == _followOnRoots.end())
      continue;
    for (const DefinedAtom *nextAtom = start->second; nextAtom;
         nextAtom = _followOnNexts[nextAtom]) {
      AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom);
      if (pos == _ordinalOverrideMap.end())
        _ordinalOverrideMap[nextAtom] = index++;
    }
  }
}

std::vector<LayoutPass::SortKey>
LayoutPass::decorate(File::AtomRange<DefinedAtom> &atomRange) const {
  std::vector<SortKey> ret;
  for (OwningAtomPtr<DefinedAtom> &atom : atomRange.owning_ptrs()) {
    auto ri = _followOnRoots.find(atom.get());
    auto oi = _ordinalOverrideMap.find(atom.get());
    const auto *root = (ri == _followOnRoots.end()) ? atom.get() : ri->second;
    uint64_t override = (oi == _ordinalOverrideMap.end()) ? 0 : oi->second;
    ret.push_back(SortKey(std::move(atom), root, override));
  }
  return ret;
}

void LayoutPass::undecorate(File::AtomRange<DefinedAtom> &atomRange,
                            std::vector<SortKey> &keys) const {
  size_t i = 0;
  for (SortKey &k : keys)
    atomRange[i++] = std::move(k._atom);
}

/// Perform the actual pass
llvm::Error LayoutPass::perform(SimpleFile &mergedFile) {
  LLVM_DEBUG(llvm::dbgs() << "******** Laying out atoms:\n");
  // sort the atoms
  ScopedTask task(getDefaultDomain(), "LayoutPass");
  File::AtomRange<DefinedAtom> atomRange = mergedFile.defined();

  // Build follow on tables
  buildFollowOnTable(atomRange);

  // Check the structure of followon graph if running in debug mode.
  LLVM_DEBUG(checkFollowonChain(atomRange));

  // Build override maps
  buildOrdinalOverrideMap(atomRange);

  LLVM_DEBUG({
    llvm::dbgs() << "unsorted atoms:\n";
    printDefinedAtoms(atomRange);
  });

  std::vector<LayoutPass::SortKey> vec = decorate(atomRange);
  sort(llvm::parallel::par, vec.begin(), vec.end(),
       [&](const LayoutPass::SortKey &l, const LayoutPass::SortKey &r) -> bool {
         return compareAtoms(l, r, _customSorter);
       });
  LLVM_DEBUG(checkTransitivity(vec, _customSorter));
  undecorate(atomRange, vec);

  LLVM_DEBUG({
    llvm::dbgs() << "sorted atoms:\n";
    printDefinedAtoms(atomRange);
  });

  LLVM_DEBUG(llvm::dbgs() << "******** Finished laying out atoms\n");
  return llvm::Error::success();
}

void addLayoutPass(PassManager &pm, const MachOLinkingContext &ctx) {
  pm.add(std::make_unique<LayoutPass>(
      ctx.registry(), [&](const DefinedAtom * left, const DefinedAtom * right,
                          bool & leftBeforeRight) ->bool {
    return ctx.customAtomOrderer(left, right, leftBeforeRight);
  }));
}

} // namespace mach_o
} // namespace lld