tsan_clock.cpp 18.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
//===-- tsan_clock.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "tsan_clock.h"
#include "tsan_rtl.h"
#include "sanitizer_common/sanitizer_placement_new.h"

// SyncClock and ThreadClock implement vector clocks for sync variables
// (mutexes, atomic variables, file descriptors, etc) and threads, respectively.
// ThreadClock contains fixed-size vector clock for maximum number of threads.
// SyncClock contains growable vector clock for currently necessary number of
// threads.
// Together they implement very simple model of operations, namely:
//
//   void ThreadClock::acquire(const SyncClock *src) {
//     for (int i = 0; i < kMaxThreads; i++)
//       clock[i] = max(clock[i], src->clock[i]);
//   }
//
//   void ThreadClock::release(SyncClock *dst) const {
//     for (int i = 0; i < kMaxThreads; i++)
//       dst->clock[i] = max(dst->clock[i], clock[i]);
//   }
//
//   void ThreadClock::ReleaseStore(SyncClock *dst) const {
//     for (int i = 0; i < kMaxThreads; i++)
//       dst->clock[i] = clock[i];
//   }
//
//   void ThreadClock::acq_rel(SyncClock *dst) {
//     acquire(dst);
//     release(dst);
//   }
//
// Conformance to this model is extensively verified in tsan_clock_test.cpp.
// However, the implementation is significantly more complex. The complexity
// allows to implement important classes of use cases in O(1) instead of O(N).
//
// The use cases are:
// 1. Singleton/once atomic that has a single release-store operation followed
//    by zillions of acquire-loads (the acquire-load is O(1)).
// 2. Thread-local mutex (both lock and unlock can be O(1)).
// 3. Leaf mutex (unlock is O(1)).
// 4. A mutex shared by 2 threads (both lock and unlock can be O(1)).
// 5. An atomic with a single writer (writes can be O(1)).
// The implementation dynamically adopts to workload. So if an atomic is in
// read-only phase, these reads will be O(1); if it later switches to read/write
// phase, the implementation will correctly handle that by switching to O(N).
//
// Thread-safety note: all const operations on SyncClock's are conducted under
// a shared lock; all non-const operations on SyncClock's are conducted under
// an exclusive lock; ThreadClock's are private to respective threads and so
// do not need any protection.
//
// Description of SyncClock state:
// clk_ - variable size vector clock, low kClkBits hold timestamp,
//   the remaining bits hold "acquired" flag (the actual value is thread's
//   reused counter);
//   if acquried == thr->reused_, then the respective thread has already
//   acquired this clock (except possibly for dirty elements).
// dirty_ - holds up to two indeces in the vector clock that other threads
//   need to acquire regardless of "acquired" flag value;
// release_store_tid_ - denotes that the clock state is a result of
//   release-store operation by the thread with release_store_tid_ index.
// release_store_reused_ - reuse count of release_store_tid_.

// We don't have ThreadState in these methods, so this is an ugly hack that
// works only in C++.
#if !SANITIZER_GO
# define CPP_STAT_INC(typ) StatInc(cur_thread(), typ)
#else
# define CPP_STAT_INC(typ) (void)0
#endif

namespace __tsan {

static atomic_uint32_t *ref_ptr(ClockBlock *cb) {
  return reinterpret_cast<atomic_uint32_t *>(&cb->table[ClockBlock::kRefIdx]);
}

// Drop reference to the first level block idx.
static void UnrefClockBlock(ClockCache *c, u32 idx, uptr blocks) {
  ClockBlock *cb = ctx->clock_alloc.Map(idx);
  atomic_uint32_t *ref = ref_ptr(cb);
  u32 v = atomic_load(ref, memory_order_acquire);
  for (;;) {
    CHECK_GT(v, 0);
    if (v == 1)
      break;
    if (atomic_compare_exchange_strong(ref, &v, v - 1, memory_order_acq_rel))
      return;
  }
  // First level block owns second level blocks, so them as well.
  for (uptr i = 0; i < blocks; i++)
    ctx->clock_alloc.Free(c, cb->table[ClockBlock::kBlockIdx - i]);
  ctx->clock_alloc.Free(c, idx);
}

ThreadClock::ThreadClock(unsigned tid, unsigned reused)
    : tid_(tid)
    , reused_(reused + 1)  // 0 has special meaning
    , cached_idx_()
    , cached_size_()
    , cached_blocks_() {
  CHECK_LT(tid, kMaxTidInClock);
  CHECK_EQ(reused_, ((u64)reused_ << kClkBits) >> kClkBits);
  nclk_ = tid_ + 1;
  last_acquire_ = 0;
  internal_memset(clk_, 0, sizeof(clk_));
}

void ThreadClock::ResetCached(ClockCache *c) {
  if (cached_idx_) {
    UnrefClockBlock(c, cached_idx_, cached_blocks_);
    cached_idx_ = 0;
    cached_size_ = 0;
    cached_blocks_ = 0;
  }
}

void ThreadClock::acquire(ClockCache *c, SyncClock *src) {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(src->size_, kMaxTid);
  CPP_STAT_INC(StatClockAcquire);

  // Check if it's empty -> no need to do anything.
  const uptr nclk = src->size_;
  if (nclk == 0) {
    CPP_STAT_INC(StatClockAcquireEmpty);
    return;
  }

  bool acquired = false;
  for (unsigned i = 0; i < kDirtyTids; i++) {
    SyncClock::Dirty dirty = src->dirty_[i];
    unsigned tid = dirty.tid;
    if (tid != kInvalidTid) {
      if (clk_[tid] < dirty.epoch) {
        clk_[tid] = dirty.epoch;
        acquired = true;
      }
    }
  }

  // Check if we've already acquired src after the last release operation on src
  if (tid_ >= nclk || src->elem(tid_).reused != reused_) {
    // O(N) acquire.
    CPP_STAT_INC(StatClockAcquireFull);
    nclk_ = max(nclk_, nclk);
    u64 *dst_pos = &clk_[0];
    for (ClockElem &src_elem : *src) {
      u64 epoch = src_elem.epoch;
      if (*dst_pos < epoch) {
        *dst_pos = epoch;
        acquired = true;
      }
      dst_pos++;
    }

    // Remember that this thread has acquired this clock.
    if (nclk > tid_)
      src->elem(tid_).reused = reused_;
  }

  if (acquired) {
    CPP_STAT_INC(StatClockAcquiredSomething);
    last_acquire_ = clk_[tid_];
    ResetCached(c);
  }
}

void ThreadClock::release(ClockCache *c, SyncClock *dst) {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(dst->size_, kMaxTid);

  if (dst->size_ == 0) {
    // ReleaseStore will correctly set release_store_tid_,
    // which can be important for future operations.
    ReleaseStore(c, dst);
    return;
  }

  CPP_STAT_INC(StatClockRelease);
  // Check if we need to resize dst.
  if (dst->size_ < nclk_)
    dst->Resize(c, nclk_);

  // Check if we had not acquired anything from other threads
  // since the last release on dst. If so, we need to update
  // only dst->elem(tid_).
  if (dst->elem(tid_).epoch > last_acquire_) {
    UpdateCurrentThread(c, dst);
    if (dst->release_store_tid_ != tid_ ||
        dst->release_store_reused_ != reused_)
      dst->release_store_tid_ = kInvalidTid;
    return;
  }

  // O(N) release.
  CPP_STAT_INC(StatClockReleaseFull);
  dst->Unshare(c);
  // First, remember whether we've acquired dst.
  bool acquired = IsAlreadyAcquired(dst);
  if (acquired)
    CPP_STAT_INC(StatClockReleaseAcquired);
  // Update dst->clk_.
  dst->FlushDirty();
  uptr i = 0;
  for (ClockElem &ce : *dst) {
    ce.epoch = max(ce.epoch, clk_[i]);
    ce.reused = 0;
    i++;
  }
  // Clear 'acquired' flag in the remaining elements.
  if (nclk_ < dst->size_)
    CPP_STAT_INC(StatClockReleaseClearTail);
  for (uptr i = nclk_; i < dst->size_; i++)
    dst->elem(i).reused = 0;
  dst->release_store_tid_ = kInvalidTid;
  dst->release_store_reused_ = 0;
  // If we've acquired dst, remember this fact,
  // so that we don't need to acquire it on next acquire.
  if (acquired)
    dst->elem(tid_).reused = reused_;
}

void ThreadClock::ReleaseStore(ClockCache *c, SyncClock *dst) {
  DCHECK_LE(nclk_, kMaxTid);
  DCHECK_LE(dst->size_, kMaxTid);
  CPP_STAT_INC(StatClockStore);

  if (dst->size_ == 0 && cached_idx_ != 0) {
    // Reuse the cached clock.
    // Note: we could reuse/cache the cached clock in more cases:
    // we could update the existing clock and cache it, or replace it with the
    // currently cached clock and release the old one. And for a shared
    // existing clock, we could replace it with the currently cached;
    // or unshare, update and cache. But, for simplicity, we currnetly reuse
    // cached clock only when the target clock is empty.
    dst->tab_ = ctx->clock_alloc.Map(cached_idx_);
    dst->tab_idx_ = cached_idx_;
    dst->size_ = cached_size_;
    dst->blocks_ = cached_blocks_;
    CHECK_EQ(dst->dirty_[0].tid, kInvalidTid);
    // The cached clock is shared (immutable),
    // so this is where we store the current clock.
    dst->dirty_[0].tid = tid_;
    dst->dirty_[0].epoch = clk_[tid_];
    dst->release_store_tid_ = tid_;
    dst->release_store_reused_ = reused_;
    // Rememeber that we don't need to acquire it in future.
    dst->elem(tid_).reused = reused_;
    // Grab a reference.
    atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
    return;
  }

  // Check if we need to resize dst.
  if (dst->size_ < nclk_)
    dst->Resize(c, nclk_);

  if (dst->release_store_tid_ == tid_ &&
      dst->release_store_reused_ == reused_ &&
      dst->elem(tid_).epoch > last_acquire_) {
    CPP_STAT_INC(StatClockStoreFast);
    UpdateCurrentThread(c, dst);
    return;
  }

  // O(N) release-store.
  CPP_STAT_INC(StatClockStoreFull);
  dst->Unshare(c);
  // Note: dst can be larger than this ThreadClock.
  // This is fine since clk_ beyond size is all zeros.
  uptr i = 0;
  for (ClockElem &ce : *dst) {
    ce.epoch = clk_[i];
    ce.reused = 0;
    i++;
  }
  for (uptr i = 0; i < kDirtyTids; i++)
    dst->dirty_[i].tid = kInvalidTid;
  dst->release_store_tid_ = tid_;
  dst->release_store_reused_ = reused_;
  // Rememeber that we don't need to acquire it in future.
  dst->elem(tid_).reused = reused_;

  // If the resulting clock is cachable, cache it for future release operations.
  // The clock is always cachable if we released to an empty sync object.
  if (cached_idx_ == 0 && dst->Cachable()) {
    // Grab a reference to the ClockBlock.
    atomic_uint32_t *ref = ref_ptr(dst->tab_);
    if (atomic_load(ref, memory_order_acquire) == 1)
      atomic_store_relaxed(ref, 2);
    else
      atomic_fetch_add(ref_ptr(dst->tab_), 1, memory_order_relaxed);
    cached_idx_ = dst->tab_idx_;
    cached_size_ = dst->size_;
    cached_blocks_ = dst->blocks_;
  }
}

void ThreadClock::acq_rel(ClockCache *c, SyncClock *dst) {
  CPP_STAT_INC(StatClockAcquireRelease);
  acquire(c, dst);
  ReleaseStore(c, dst);
}

// Updates only single element related to the current thread in dst->clk_.
void ThreadClock::UpdateCurrentThread(ClockCache *c, SyncClock *dst) const {
  // Update the threads time, but preserve 'acquired' flag.
  for (unsigned i = 0; i < kDirtyTids; i++) {
    SyncClock::Dirty *dirty = &dst->dirty_[i];
    const unsigned tid = dirty->tid;
    if (tid == tid_ || tid == kInvalidTid) {
      CPP_STAT_INC(StatClockReleaseFast);
      dirty->tid = tid_;
      dirty->epoch = clk_[tid_];
      return;
    }
  }
  // Reset all 'acquired' flags, O(N).
  // We are going to touch dst elements, so we need to unshare it.
  dst->Unshare(c);
  CPP_STAT_INC(StatClockReleaseSlow);
  dst->elem(tid_).epoch = clk_[tid_];
  for (uptr i = 0; i < dst->size_; i++)
    dst->elem(i).reused = 0;
  dst->FlushDirty();
}

// Checks whether the current thread has already acquired src.
bool ThreadClock::IsAlreadyAcquired(const SyncClock *src) const {
  if (src->elem(tid_).reused != reused_)
    return false;
  for (unsigned i = 0; i < kDirtyTids; i++) {
    SyncClock::Dirty dirty = src->dirty_[i];
    if (dirty.tid != kInvalidTid) {
      if (clk_[dirty.tid] < dirty.epoch)
        return false;
    }
  }
  return true;
}

// Sets a single element in the vector clock.
// This function is called only from weird places like AcquireGlobal.
void ThreadClock::set(ClockCache *c, unsigned tid, u64 v) {
  DCHECK_LT(tid, kMaxTid);
  DCHECK_GE(v, clk_[tid]);
  clk_[tid] = v;
  if (nclk_ <= tid)
    nclk_ = tid + 1;
  last_acquire_ = clk_[tid_];
  ResetCached(c);
}

void ThreadClock::DebugDump(int(*printf)(const char *s, ...)) {
  printf("clock=[");
  for (uptr i = 0; i < nclk_; i++)
    printf("%s%llu", i == 0 ? "" : ",", clk_[i]);
  printf("] tid=%u/%u last_acq=%llu", tid_, reused_, last_acquire_);
}

SyncClock::SyncClock() {
  ResetImpl();
}

SyncClock::~SyncClock() {
  // Reset must be called before dtor.
  CHECK_EQ(size_, 0);
  CHECK_EQ(blocks_, 0);
  CHECK_EQ(tab_, 0);
  CHECK_EQ(tab_idx_, 0);
}

void SyncClock::Reset(ClockCache *c) {
  if (size_)
    UnrefClockBlock(c, tab_idx_, blocks_);
  ResetImpl();
}

void SyncClock::ResetImpl() {
  tab_ = 0;
  tab_idx_ = 0;
  size_ = 0;
  blocks_ = 0;
  release_store_tid_ = kInvalidTid;
  release_store_reused_ = 0;
  for (uptr i = 0; i < kDirtyTids; i++)
    dirty_[i].tid = kInvalidTid;
}

void SyncClock::Resize(ClockCache *c, uptr nclk) {
  CPP_STAT_INC(StatClockReleaseResize);
  Unshare(c);
  if (nclk <= capacity()) {
    // Memory is already allocated, just increase the size.
    size_ = nclk;
    return;
  }
  if (size_ == 0) {
    // Grow from 0 to one-level table.
    CHECK_EQ(size_, 0);
    CHECK_EQ(blocks_, 0);
    CHECK_EQ(tab_, 0);
    CHECK_EQ(tab_idx_, 0);
    tab_idx_ = ctx->clock_alloc.Alloc(c);
    tab_ = ctx->clock_alloc.Map(tab_idx_);
    internal_memset(tab_, 0, sizeof(*tab_));
    atomic_store_relaxed(ref_ptr(tab_), 1);
    size_ = 1;
  } else if (size_ > blocks_ * ClockBlock::kClockCount) {
    u32 idx = ctx->clock_alloc.Alloc(c);
    ClockBlock *new_cb = ctx->clock_alloc.Map(idx);
    uptr top = size_ - blocks_ * ClockBlock::kClockCount;
    CHECK_LT(top, ClockBlock::kClockCount);
    const uptr move = top * sizeof(tab_->clock[0]);
    internal_memcpy(&new_cb->clock[0], tab_->clock, move);
    internal_memset(&new_cb->clock[top], 0, sizeof(*new_cb) - move);
    internal_memset(tab_->clock, 0, move);
    append_block(idx);
  }
  // At this point we have first level table allocated and all clock elements
  // are evacuated from it to a second level block.
  // Add second level tables as necessary.
  while (nclk > capacity()) {
    u32 idx = ctx->clock_alloc.Alloc(c);
    ClockBlock *cb = ctx->clock_alloc.Map(idx);
    internal_memset(cb, 0, sizeof(*cb));
    append_block(idx);
  }
  size_ = nclk;
}

// Flushes all dirty elements into the main clock array.
void SyncClock::FlushDirty() {
  for (unsigned i = 0; i < kDirtyTids; i++) {
    Dirty *dirty = &dirty_[i];
    if (dirty->tid != kInvalidTid) {
      CHECK_LT(dirty->tid, size_);
      elem(dirty->tid).epoch = dirty->epoch;
      dirty->tid = kInvalidTid;
    }
  }
}

bool SyncClock::IsShared() const {
  if (size_ == 0)
    return false;
  atomic_uint32_t *ref = ref_ptr(tab_);
  u32 v = atomic_load(ref, memory_order_acquire);
  CHECK_GT(v, 0);
  return v > 1;
}

// Unshares the current clock if it's shared.
// Shared clocks are immutable, so they need to be unshared before any updates.
// Note: this does not apply to dirty entries as they are not shared.
void SyncClock::Unshare(ClockCache *c) {
  if (!IsShared())
    return;
  // First, copy current state into old.
  SyncClock old;
  old.tab_ = tab_;
  old.tab_idx_ = tab_idx_;
  old.size_ = size_;
  old.blocks_ = blocks_;
  old.release_store_tid_ = release_store_tid_;
  old.release_store_reused_ = release_store_reused_;
  for (unsigned i = 0; i < kDirtyTids; i++)
    old.dirty_[i] = dirty_[i];
  // Then, clear current object.
  ResetImpl();
  // Allocate brand new clock in the current object.
  Resize(c, old.size_);
  // Now copy state back into this object.
  Iter old_iter(&old);
  for (ClockElem &ce : *this) {
    ce = *old_iter;
    ++old_iter;
  }
  release_store_tid_ = old.release_store_tid_;
  release_store_reused_ = old.release_store_reused_;
  for (unsigned i = 0; i < kDirtyTids; i++)
    dirty_[i] = old.dirty_[i];
  // Drop reference to old and delete if necessary.
  old.Reset(c);
}

// Can we cache this clock for future release operations?
ALWAYS_INLINE bool SyncClock::Cachable() const {
  if (size_ == 0)
    return false;
  for (unsigned i = 0; i < kDirtyTids; i++) {
    if (dirty_[i].tid != kInvalidTid)
      return false;
  }
  return atomic_load_relaxed(ref_ptr(tab_)) == 1;
}

// elem linearizes the two-level structure into linear array.
// Note: this is used only for one time accesses, vector operations use
// the iterator as it is much faster.
ALWAYS_INLINE ClockElem &SyncClock::elem(unsigned tid) const {
  DCHECK_LT(tid, size_);
  const uptr block = tid / ClockBlock::kClockCount;
  DCHECK_LE(block, blocks_);
  tid %= ClockBlock::kClockCount;
  if (block == blocks_)
    return tab_->clock[tid];
  u32 idx = get_block(block);
  ClockBlock *cb = ctx->clock_alloc.Map(idx);
  return cb->clock[tid];
}

ALWAYS_INLINE uptr SyncClock::capacity() const {
  if (size_ == 0)
    return 0;
  uptr ratio = sizeof(ClockBlock::clock[0]) / sizeof(ClockBlock::table[0]);
  // How many clock elements we can fit into the first level block.
  // +1 for ref counter.
  uptr top = ClockBlock::kClockCount - RoundUpTo(blocks_ + 1, ratio) / ratio;
  return blocks_ * ClockBlock::kClockCount + top;
}

ALWAYS_INLINE u32 SyncClock::get_block(uptr bi) const {
  DCHECK(size_);
  DCHECK_LT(bi, blocks_);
  return tab_->table[ClockBlock::kBlockIdx - bi];
}

ALWAYS_INLINE void SyncClock::append_block(u32 idx) {
  uptr bi = blocks_++;
  CHECK_EQ(get_block(bi), 0);
  tab_->table[ClockBlock::kBlockIdx - bi] = idx;
}

// Used only by tests.
u64 SyncClock::get(unsigned tid) const {
  for (unsigned i = 0; i < kDirtyTids; i++) {
    Dirty dirty = dirty_[i];
    if (dirty.tid == tid)
      return dirty.epoch;
  }
  return elem(tid).epoch;
}

// Used only by Iter test.
u64 SyncClock::get_clean(unsigned tid) const {
  return elem(tid).epoch;
}

void SyncClock::DebugDump(int(*printf)(const char *s, ...)) {
  printf("clock=[");
  for (uptr i = 0; i < size_; i++)
    printf("%s%llu", i == 0 ? "" : ",", elem(i).epoch);
  printf("] reused=[");
  for (uptr i = 0; i < size_; i++)
    printf("%s%llu", i == 0 ? "" : ",", elem(i).reused);
  printf("] release_store_tid=%d/%d dirty_tids=%d[%llu]/%d[%llu]",
      release_store_tid_, release_store_reused_,
      dirty_[0].tid, dirty_[0].epoch,
      dirty_[1].tid, dirty_[1].epoch);
}

void SyncClock::Iter::Next() {
  // Finished with the current block, move on to the next one.
  block_++;
  if (block_ < parent_->blocks_) {
    // Iterate over the next second level block.
    u32 idx = parent_->get_block(block_);
    ClockBlock *cb = ctx->clock_alloc.Map(idx);
    pos_ = &cb->clock[0];
    end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
        ClockBlock::kClockCount);
    return;
  }
  if (block_ == parent_->blocks_ &&
      parent_->size_ > parent_->blocks_ * ClockBlock::kClockCount) {
    // Iterate over elements in the first level block.
    pos_ = &parent_->tab_->clock[0];
    end_ = pos_ + min(parent_->size_ - block_ * ClockBlock::kClockCount,
        ClockBlock::kClockCount);
    return;
  }
  parent_ = nullptr;  // denotes end
}
}  // namespace __tsan