squat.js
3.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
// More API functions here:
// https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/pose
// the link to your model provided by Teachable Machine export panel
const URL = "https://teachablemachine.withgoogle.com/models/xymjZj4q-/"; // 임시 URI - stand , squart, bent(허리 굽은 자세) 학습.
let model, webcam, ctx, labelContainer, maxPredictions;
async function init() {
const modelURL = URL + "model.json";
const metadataURL = URL + "metadata.json";
var target = document.getElementById("youtube");
target.className = "visible";
// load the model and metadata
// Refer to tmImage.loadFromFiles() in the API to support files from a file picker
// Note: the pose library adds a tmPose object to your window (window.tmPose)
model = await tmPose.load(modelURL, metadataURL);
maxPredictions = model.getTotalClasses();
// Convenience function to setup a webcam
const size = 300;
const flip = true; // whether to flip the webcam
webcam = new tmPose.Webcam(size, size, flip); // width, height, flip
await webcam.setup(); // request access to the webcam
await webcam.play();
webcam.style
window.requestAnimationFrame(loop);
// append/get elements to the DOM
const canvas = document.getElementById("canvas");
canvas.width = size; canvas.height = size;
ctx = canvas.getContext("2d");
labelContainer = document.getElementById("label-container");
for (let i = 0; i < maxPredictions; i++) { // and class labels
labelContainer.appendChild(document.createElement("div"));
}
}
async function loop(timestamp) {
webcam.update(); // update the webcam frame
await predict();
window.requestAnimationFrame(loop);
}
// 상태 : 서있는 상태로 초기화
let status = "stand" ;
// 갯수 count
let count = 0;
async function predict() {
// Prediction #1: run input through posenet
// estimatePose can take in an image, video or canvas html element
const { pose, posenetOutput } = await model.estimatePose(webcam.canvas);
// Prediction 2: run input through teachable machine classification model
const prediction = await model.predict(posenetOutput);
if (prediction[0].probability.toFixed(2) > 0.9) { // 서있는 상태
if (status == "squat"){ // 전에 스쿼트 상태였다면, 일어날 때 카운트를 하나 올려줘야 함.
count++;
var audio = new Audio('./sound/' + count%10 + '.wav');
audio.play();
console.log(count);
}
status = "stand"
} else if (prediction[1].probability.toFixed(2) == 1.00) { // 스쿼트 자세
status = "squat"
} else if (prediction[2].probability.toFixed(2) == 1.00) { // 굽은 자세(잘못된 케이스)
if (status == "squart" || status == "stand") { // 굽은 자세로 잘못 수행하면, 소리 나도록
var audio = new Audio('./sound/bad.mp3');
audio.play();
}
status = "bent"
}
for (let i = 0; i < maxPredictions; i++) {
const classPrediction =
prediction[i].className + ": " + prediction[i].probability.toFixed(2);
labelContainer.childNodes[i].innerHTML = classPrediction;
}
// finally draw the poses
drawPose(pose);
}
function drawPose(pose) {
if (webcam.canvas) {
ctx.drawImage(webcam.canvas, 0, 0);
// draw the keypoints and skeleton
if (pose) {
const minPartConfidence = 0.5;
tmPose.drawKeypoints(pose.keypoints, minPartConfidence, ctx);
tmPose.drawSkeleton(pose.keypoints, minPartConfidence, ctx);
}
}
}