PathfinderAlgorithms.js 27.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
/**
 * (c) 2016 Highsoft AS
 * Author: Øystein Moseng
 *
 * License: www.highcharts.com/license
 */
'use strict';
import H from '../parts/Globals.js';
import '../parts/Utilities.js';

var min = Math.min,
    max = Math.max,
    abs = Math.abs,
    pick = H.pick;

/**
 * Get index of last obstacle before xMin. Employs a type of binary search, and
 * thus requires that obstacles are sorted by xMin value.
 *
 * @param {Array} obstacles Array of obstacles to search in.
 * @param {Number} xMin The xMin threshold.
 * @param {Number} startIx Starting index to search from. Must be within array
 *  range.
 *
 * @return {Number} result The index of the last obstacle element before xMin.
 */
function findLastObstacleBefore(obstacles, xMin, startIx) {
    var left = startIx || 0, // left limit
        right = obstacles.length - 1, // right limit
        min = xMin - 0.0000001, // Make sure we include all obstacles at xMin
        cursor,
        cmp;
    while (left <= right) {
        cursor = (right + left) >> 1;
        cmp = min - obstacles[cursor].xMin;
        if (cmp > 0) {
            left = cursor + 1;
        } else if (cmp < 0) {
            right = cursor - 1;
        } else {
            return cursor;
        }
    }
    return left > 0 ? left - 1 : 0;
}

/**
 * Test if a point lays within an obstacle.
 *
 * @param {Object} obstacle Obstacle to test.
 * @param {Object} point Point with x/y props.
 *
 * @return {Boolean} result Whether point is within the obstacle or not.
 */
function pointWithinObstacle(obstacle, point) {
    return (
        point.x <= obstacle.xMax &&
        point.x >= obstacle.xMin &&
        point.y <= obstacle.yMax &&
        point.y >= obstacle.yMin
    );
}

/**
 * Find the index of an obstacle that wraps around a point.
 * Returns -1 if not found.
 *
 * @param {Array} obstacles Obstacles to test.
 * @param {Object} point Point with x/y props.
 *
 * @return {Number} result Ix of the obstacle in the array, or -1 if not found.
 */
function findObstacleFromPoint(obstacles, point) {
    var i = findLastObstacleBefore(obstacles, point.x + 1) + 1;
    while (i--) {
        if (obstacles[i].xMax >= point.x &&
            // optimization using lazy evaluation
            pointWithinObstacle(obstacles[i], point)) {
            return i;
        }
    }
    return -1;
}

/**
 * Get SVG path array from array of line segments.
 *
 * @param {Array} segments The segments to build the path from.
 *
 * @return {Array} result SVG path array as accepted by the SVG Renderer.
 */
function pathFromSegments(segments) {
    var path = [];
    if (segments.length) {
        path.push('M', segments[0].start.x, segments[0].start.y);
        for (var i = 0; i < segments.length; ++i) {
            path.push('L', segments[i].end.x, segments[i].end.y);
        }
    }
    return path;
}

/**
 * Limits obstacle max/mins in all directions to bounds. Modifies input
 * obstacle.
 *
 * @param {Object} obstacle Obstacle to limit.
 * @param {Object} bounds Bounds to use as limit.
 */
function limitObstacleToBounds(obstacle, bounds) {
    obstacle.yMin = max(obstacle.yMin, bounds.yMin);
    obstacle.yMax = min(obstacle.yMax, bounds.yMax);
    obstacle.xMin = max(obstacle.xMin, bounds.xMin);
    obstacle.xMax = min(obstacle.xMax, bounds.xMax);
}



// Define the available pathfinding algorithms.
// Algorithms take up to 3 arguments: starting point, ending point, and an
// options object.
var algorithms = {

    /**
     * Get an SVG path from a starting coordinate to an ending coordinate.
     * Draws a straight line.
     *
     * @param {Object} start Starting coordinate, object with x/y props.
     * @param {Object} end Ending coordinate, object with x/y props.
     *
     * @return {Object} result An object with the SVG path in Array form as
     *  accepted by the SVG renderer, as well as an array of new obstacles
     *  making up this path.
     */
    straight: function (start, end) {
        return {
            path: ['M', start.x, start.y, 'L', end.x, end.y],
            obstacles: [{ start: start, end: end }]
        };
    },

    /**
     * Find a path from a starting coordinate to an ending coordinate, using
     * right angles only, and taking only starting/ending obstacle into
     * consideration.
     *
     *  Options
     *      - chartObstacles:   Array of chart obstacles to avoid
     *      - startDirectionX:  Optional. True if starting in the X direction.
     *                          If not provided, the algorithm starts in the
     *                          direction that is the furthest between
     *                          start/end.
     *
     * @param {Object} start Starting coordinate, object with x/y props.
     * @param {Object} end Ending coordinate, object with x/y props.
     * @param {Object} options Options for the algorithm.
     *
     * @return {Object} result An object with the SVG path in Array form as
     *  accepted by the SVG renderer, as well as an array of new obstacles
     *  making up this path.
     */
    simpleConnect: H.extend(function (start, end, options) {
        var segments = [],
            endSegment,
            dir = pick(
                options.startDirectionX,
                abs(end.x - start.x) > abs(end.y - start.y)
            ) ? 'x' : 'y',
            chartObstacles = options.chartObstacles,
            startObstacleIx = findObstacleFromPoint(chartObstacles, start),
            endObstacleIx = findObstacleFromPoint(chartObstacles, end),
            startObstacle,
            endObstacle,
            prevWaypoint,
            waypoint,
            waypoint2,
            useMax,
            endPoint;

        // Return a clone of a point with a property set from a target object,
        // optionally with an offset
        function copyFromPoint(from, fromKey, to, toKey, offset) {
            var point = {
                x: from.x,
                y: from.y
            };
            point[fromKey] = to[toKey || fromKey] + (offset || 0);
            return point;
        }

        // Return waypoint outside obstacle
        function getMeOut(obstacle, point, direction) {
            var useMax = abs(point[direction] - obstacle[direction + 'Min']) >
                        abs(point[direction] - obstacle[direction + 'Max']);
            return copyFromPoint(
                point,
                direction,
                obstacle,
                direction + (useMax ? 'Max' : 'Min'),
                useMax ? 1 : -1
            );
        }

        // Pull out end point
        if (endObstacleIx > -1) {
            endObstacle = chartObstacles[endObstacleIx];
            waypoint = getMeOut(endObstacle, end, dir);
            endSegment = {
                start: waypoint,
                end: end
            };
            endPoint = waypoint;
        } else {
            endPoint = end;
        }

        // If an obstacle envelops the start point, add a segment to get out,
        // and around it.
        if (startObstacleIx > -1) {
            startObstacle = chartObstacles[startObstacleIx];
            waypoint = getMeOut(startObstacle, start, dir);
            segments.push({
                start: start,
                end: waypoint
            });

            // If we are going back again, switch direction to get around start
            // obstacle.
            if (
                waypoint[dir] > start[dir] ===  // Going towards max from start
                waypoint[dir] > endPoint[dir]   // Going towards min to end
            ) {
                dir = dir === 'y' ? 'x' : 'y';
                useMax = start[dir] < end[dir];
                segments.push({
                    start: waypoint,
                    end: copyFromPoint(
                        waypoint,
                        dir,
                        startObstacle,
                        dir + (useMax ? 'Max' : 'Min'),
                        useMax ? 1 : -1
                    )
                });

                // Switch direction again
                dir = dir === 'y' ? 'x' : 'y';
            }
        }

        // We are around the start obstacle. Go towards the end in one
        // direction.
        prevWaypoint = segments.length ?
            segments[segments.length - 1].end :
            start;
        waypoint = copyFromPoint(prevWaypoint, dir, endPoint);
        segments.push({
            start: prevWaypoint,
            end: waypoint
        });

        // Final run to end point in the other direction
        dir = dir === 'y' ? 'x' : 'y';
        waypoint2 = copyFromPoint(waypoint, dir, endPoint);
        segments.push({
            start: waypoint,
            end: waypoint2
        });

        // Finally add the endSegment
        segments.push(endSegment);

        return {
            path: pathFromSegments(segments),
            obstacles: segments
        };
    }, {
        requiresObstacles: true
    }),

    /**
     * Find a path from a starting coordinate to an ending coordinate, taking
     * obstacles into consideration. Might not always find the optimal path,
     * but is fast, and usually good enough.
     *
     *  Options
     *      - chartObstacles:   Array of chart obstacles to avoid
     *      - lineObstacles:    Array of line obstacles to jump over
     *      - obstacleMetrics:  Object with metrics of chartObstacles cached
     *      - hardBounds:       Hard boundaries to not cross
     *      - obstacleOptions:  Options for the obstacles, including margin
     *      - startDirectionX:  Optional. True if starting in the X direction.
     *                          If not provided, the algorithm starts in the
     *                          direction that is the furthest between
     *                          start/end.
     *
     * @param {Object} start Starting coordinate, object with x/y props.
     * @param {Object} end Ending coordinate, object with x/y props.
     * @param {Object} options Options for the algorithm.
     *
     * @return {Object} result An object with the SVG path in Array form as
     *  accepted by the SVG renderer, as well as an array of new obstacles
     *  making up this path.
     */
    fastAvoid: H.extend(function (start, end, options) {
        /*
            Algorithm rules/description
            - Find initial direction
            - Determine soft/hard max for each direction.
            - Move along initial direction until obstacle.
            - Change direction.
            - If hitting obstacle, first try to change length of previous line
              before changing direction again.

            Soft min/max x = start/destination x +/- widest obstacle + margin
            Soft min/max y = start/destination y +/- tallest obstacle + margin

            TODO:
                - Make retrospective, try changing prev segment to reduce
                  corners
                - Fix logic for breaking out of end-points - not always picking
                  the best direction currently
                - When going around the end obstacle we should not always go the
                  shortest route, rather pick the one closer to the end point
        */
        var dirIsX = pick(
                options.startDirectionX,
                abs(end.x - start.x) > abs(end.y - start.y)
            ),
            dir = dirIsX ? 'x' : 'y',
            segments,
            useMax,
            extractedEndPoint,
            endSegments = [],
            forceObstacleBreak = false, // Used in clearPathTo to keep track of
                                    // when to force break through an obstacle.

            // Boundaries to stay within. If beyond soft boundary, prefer to
            // change direction ASAP. If at hard max, always change immediately.
            metrics = options.obstacleMetrics,
            softMinX = min(start.x, end.x) - metrics.maxWidth - 10,
            softMaxX = max(start.x, end.x) + metrics.maxWidth + 10,
            softMinY = min(start.y, end.y) - metrics.maxHeight - 10,
            softMaxY = max(start.y, end.y) + metrics.maxHeight + 10,

            // Obstacles
            chartObstacles = options.chartObstacles,
            startObstacleIx = findLastObstacleBefore(chartObstacles, softMinX),
            endObstacleIx = findLastObstacleBefore(chartObstacles, softMaxX);

        // How far can you go between two points before hitting an obstacle?
        // Does not work for diagonal lines (because it doesn't have to).
        function pivotPoint(fromPoint, toPoint, directionIsX) {
            var firstPoint,
                lastPoint,
                highestPoint,
                lowestPoint,
                i,
                searchDirection = fromPoint.x < toPoint.x ? 1 : -1;

            if (fromPoint.x < toPoint.x) {
                firstPoint = fromPoint;
                lastPoint = toPoint;
            } else {
                firstPoint = toPoint;
                lastPoint = fromPoint;
            }

            if (fromPoint.y < toPoint.y) {
                lowestPoint = fromPoint;
                highestPoint = toPoint;
            } else {
                lowestPoint = toPoint;
                highestPoint = fromPoint;
            }

            // Go through obstacle range in reverse if toPoint is before
            // fromPoint in the X-dimension.
            i = searchDirection < 0 ?
                // Searching backwards, start at last obstacle before last point
                min(findLastObstacleBefore(chartObstacles, lastPoint.x),
                    chartObstacles.length - 1) :
                // Forwards. Since we're not sorted by xMax, we have to look
                // at all obstacles.
                0;

            // Go through obstacles in this X range
            while (chartObstacles[i] && (
                searchDirection > 0 && chartObstacles[i].xMin <= lastPoint.x ||
                searchDirection < 0 && chartObstacles[i].xMax >= firstPoint.x
            )) {
                // If this obstacle is between from and to points in a straight
                // line, pivot at the intersection.
                if (
                    chartObstacles[i].xMin <= lastPoint.x &&
                    chartObstacles[i].xMax >= firstPoint.x &&
                    chartObstacles[i].yMin <= highestPoint.y &&
                    chartObstacles[i].yMax >= lowestPoint.y
                ) {
                    if (directionIsX) {
                        return {
                            y: fromPoint.y,
                            x: fromPoint.x < toPoint.x ?
                                chartObstacles[i].xMin - 1 :
                                chartObstacles[i].xMax + 1,
                            obstacle: chartObstacles[i]
                        };
                    }
                    // else ...
                    return {
                        x: fromPoint.x,
                        y: fromPoint.y < toPoint.y ?
                            chartObstacles[i].yMin - 1 :
                            chartObstacles[i].yMax + 1,
                        obstacle: chartObstacles[i]
                    };
                }

                i += searchDirection;
            }

            return toPoint;
        }

        /**
         * Decide in which direction to dodge or get out of an obstacle.
         * Considers desired direction, which way is shortest, soft and hard
         * bounds.
         *
         * Returns a string, either xMin, xMax, yMin or yMax.
         *
         * @param {Object} obstacle Obstacle to dodge/escape.
         * @param {Object} fromPoint Point with x/y props that's
         * dodging/escaping.
         * @param {Object} toPoint Goal point.
         * @param {Boolean} dirIsX Dodge in X dimension.
         * @param {Object} bounds Hard and soft boundaries.
         *
         * @return {Boolean} result Use max or not.
         */
        function getDodgeDirection(
            obstacle,
            fromPoint,
            toPoint,
            dirIsX,
            bounds
        ) {
            var softBounds = bounds.soft,
                hardBounds = bounds.hard,
                dir = dirIsX ? 'x' : 'y',
                toPointMax = { x: fromPoint.x, y: fromPoint.y },
                toPointMin = { x: fromPoint.x, y: fromPoint.y },
                minPivot,
                maxPivot,
                maxOutOfSoftBounds = obstacle[dir + 'Max'] >=
                                    softBounds[dir + 'Max'],
                minOutOfSoftBounds = obstacle[dir + 'Min'] <=
                                    softBounds[dir + 'Min'],
                maxOutOfHardBounds = obstacle[dir + 'Max'] >=
                                    hardBounds[dir + 'Max'],
                minOutOfHardBounds = obstacle[dir + 'Min'] <=
                                    hardBounds[dir + 'Min'],
                // Find out if we should prefer one direction over the other if
                // we can choose freely
                minDistance = abs(obstacle[dir + 'Min'] - fromPoint[dir]),
                maxDistance = abs(obstacle[dir + 'Max'] - fromPoint[dir]),
                // If it's a small difference, pick the one leading towards dest
                // point. Otherwise pick the shortest distance
                useMax = abs(minDistance - maxDistance) < 10 ?
                        fromPoint[dir] < toPoint[dir] :
                        maxDistance < minDistance;

            // Check if we hit any obstacles trying to go around in either
            // direction.
            toPointMin[dir] = obstacle[dir + 'Min'];
            toPointMax[dir] = obstacle[dir + 'Max'];
            minPivot = pivotPoint(fromPoint, toPointMin, dirIsX)[dir] !==
                        toPointMin[dir];
            maxPivot = pivotPoint(fromPoint, toPointMax, dirIsX)[dir] !==
                        toPointMax[dir];
            useMax = minPivot ?
                (maxPivot ? useMax : true) :
                (maxPivot ? false : useMax);

            // useMax now contains our preferred choice, bounds not taken into
            // account. If both or neither direction is out of bounds we want to
            // use this.

            // Deal with soft bounds
            useMax = minOutOfSoftBounds ?
                (maxOutOfSoftBounds ? useMax : true) : // Out on min
                (maxOutOfSoftBounds ? false : useMax); // Not out on min

            // Deal with hard bounds
            useMax = minOutOfHardBounds ?
                (maxOutOfHardBounds ? useMax : true) : // Out on min
                (maxOutOfHardBounds ? false : useMax); // Not out on min

            return useMax;
        }

        // Find a clear path between point
        function clearPathTo(fromPoint, toPoint, dirIsX) {
            // Don't waste time if we've hit goal
            if (fromPoint.x === toPoint.x && fromPoint.y === toPoint.y) {
                return [];
            }

            var dir = dirIsX ? 'x' : 'y',
                pivot,
                segments,
                waypoint,
                waypointUseMax,
                envelopingObstacle,
                secondEnvelopingObstacle,
                envelopWaypoint,
                obstacleMargin = options.obstacleOptions.margin,
                bounds = {
                    soft: {
                        xMin: softMinX,
                        xMax: softMaxX,
                        yMin: softMinY,
                        yMax: softMaxY
                    },
                    hard: options.hardBounds
                };

            // If fromPoint is inside an obstacle we have a problem. Break out
            // by just going to the outside of this obstacle. We prefer to go to
            // the nearest edge in the chosen direction.
            envelopingObstacle =
                findObstacleFromPoint(chartObstacles, fromPoint);
            if (envelopingObstacle > -1) {
                envelopingObstacle = chartObstacles[envelopingObstacle];
                waypointUseMax = getDodgeDirection(
                    envelopingObstacle, fromPoint, toPoint, dirIsX, bounds
                );

                // Cut obstacle to hard bounds to make sure we stay within
                limitObstacleToBounds(envelopingObstacle, options.hardBounds);

                envelopWaypoint = dirIsX ? {
                    y: fromPoint.y,
                    x: envelopingObstacle[waypointUseMax ? 'xMax' : 'xMin'] +
                        (waypointUseMax ? 1 : -1)
                } : {
                    x: fromPoint.x,
                    y: envelopingObstacle[waypointUseMax ? 'yMax' : 'yMin'] +
                        (waypointUseMax ? 1 : -1)
                };

                // If we crashed into another obstacle doing this, we put the
                // waypoint between them instead
                secondEnvelopingObstacle = findObstacleFromPoint(
                    chartObstacles, envelopWaypoint);
                if (secondEnvelopingObstacle > -1) {
                    secondEnvelopingObstacle = chartObstacles[
                        secondEnvelopingObstacle
                    ];

                    // Cut obstacle to hard bounds
                    limitObstacleToBounds(
                        secondEnvelopingObstacle,
                        options.hardBounds
                    );

                    // Modify waypoint to lay between obstacles
                    envelopWaypoint[dir] = waypointUseMax ? max(
                        envelopingObstacle[dir + 'Max'] - obstacleMargin + 1,
                        (
                            secondEnvelopingObstacle[dir + 'Min'] +
                            envelopingObstacle[dir + 'Max']
                        ) / 2
                    ) :
                    min(
                        envelopingObstacle[dir + 'Min'] + obstacleMargin - 1,
                        (
                            secondEnvelopingObstacle[dir + 'Max'] +
                            envelopingObstacle[dir + 'Min']
                        ) / 2
                    );

                    // We are not going anywhere. If this happens for the first
                    // time, do nothing. Otherwise, try to go to the extreme of
                    // the obstacle pair in the current direction.
                    if (fromPoint.x === envelopWaypoint.x &&
                        fromPoint.y === envelopWaypoint.y) {
                        if (forceObstacleBreak) {
                            envelopWaypoint[dir] = waypointUseMax ?
                                max(
                                    envelopingObstacle[dir + 'Max'],
                                    secondEnvelopingObstacle[dir + 'Max']
                                ) + 1 :
                                min(
                                    envelopingObstacle[dir + 'Min'],
                                    secondEnvelopingObstacle[dir + 'Min']
                                ) - 1;
                        }
                        // Toggle on if off, and the opposite
                        forceObstacleBreak = !forceObstacleBreak;
                    } else {
                        // This point is not identical to previous.
                        // Clear break trigger.
                        forceObstacleBreak = false;
                    }
                }

                segments = [{
                    start: fromPoint,
                    end: envelopWaypoint
                }];

            } else { // If not enveloping, use standard pivot calculation

                pivot = pivotPoint(fromPoint, {
                    x: dirIsX ? toPoint.x : fromPoint.x,
                    y: dirIsX ? fromPoint.y : toPoint.y
                }, dirIsX);

                segments = [{
                    start: fromPoint,
                    end: {
                        x: pivot.x,
                        y: pivot.y
                    }
                }];

                // Pivot before goal, use a waypoint to dodge obstacle
                if (pivot[dirIsX ? 'x' : 'y'] !== toPoint[dirIsX ? 'x' : 'y']) {
                    // Find direction of waypoint
                    waypointUseMax = getDodgeDirection(
                        pivot.obstacle, pivot, toPoint, !dirIsX, bounds
                    );

                    // Cut waypoint to hard bounds
                    limitObstacleToBounds(pivot.obstacle, options.hardBounds);

                    waypoint = {
                        x: dirIsX ?
                            pivot.x :
                            pivot.obstacle[waypointUseMax ? 'xMax' : 'xMin'] +
                                (waypointUseMax ? 1 : -1),
                        y: dirIsX ?
                            pivot.obstacle[waypointUseMax ? 'yMax' : 'yMin'] +
                                (waypointUseMax ? 1 : -1) :
                            pivot.y
                    };

                    // We're changing direction here, store that to make sure we
                    // also change direction when adding the last segment array
                    // after handling waypoint.
                    dirIsX = !dirIsX;

                    segments = segments.concat(clearPathTo({
                        x: pivot.x,
                        y: pivot.y
                    }, waypoint, dirIsX));
                }
            }

            // Get segments for the other direction too
            // Recursion is our friend
            segments = segments.concat(clearPathTo(
                segments[segments.length - 1].end, toPoint, !dirIsX
            ));

            return segments;
        }

        // Extract point to outside of obstacle in whichever direction is
        // closest. Returns new point outside obstacle.
        function extractFromObstacle(obstacle, point, goalPoint) {
            var dirIsX = min(obstacle.xMax - point.x, point.x - obstacle.xMin) <
                        min(obstacle.yMax - point.y, point.y - obstacle.yMin),
                bounds = {
                    soft: options.hardBounds,
                    hard: options.hardBounds
                },
                useMax = getDodgeDirection(
                    obstacle, point, goalPoint, dirIsX, bounds
                );

            return dirIsX ? {
                y: point.y,
                x: obstacle[useMax ? 'xMax' : 'xMin'] + (useMax ? 1 : -1)
            } : {
                x: point.x,
                y: obstacle[useMax ? 'yMax' : 'yMin'] + (useMax ? 1 : -1)
            };
        }

        // Cut the obstacle array to soft bounds for optimization in large
        // datasets.
        chartObstacles =
            chartObstacles.slice(startObstacleIx, endObstacleIx + 1);

        // If an obstacle envelops the end point, move it out of there and add
        // a little segment to where it was.
        if ((endObstacleIx = findObstacleFromPoint(chartObstacles, end)) > -1) {
            extractedEndPoint = extractFromObstacle(
                chartObstacles[endObstacleIx],
                end,
                start
            );
            endSegments.push({
                end: end,
                start: extractedEndPoint
            });
            end = extractedEndPoint;
        }
        // If it's still inside one or more obstacles, get out of there by
        // force-moving towards the start point.
        while (
            (endObstacleIx = findObstacleFromPoint(chartObstacles, end)) > -1
        ) {
            useMax = end[dir] - start[dir] < 0;
            extractedEndPoint = {
                x: end.x,
                y: end.y
            };
            extractedEndPoint[dir] = chartObstacles[endObstacleIx][
                useMax ? dir + 'Max' : dir + 'Min'
            ] + (useMax ? 1 : -1);
            endSegments.push({
                end: end,
                start: extractedEndPoint
            });
            end = extractedEndPoint;
        }

        // Find the path
        segments = clearPathTo(start, end, dirIsX);

        // Add the end-point segments
        segments = segments.concat(endSegments.reverse());

        return {
            path: pathFromSegments(segments),
            obstacles: segments
        };
    }, {
        requiresObstacles: true
    })
};

export default algorithms;