long.js 22.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2009 Google Inc. All Rights Reserved

/**
 * Defines a Long class for representing a 64-bit two's-complement
 * integer value, which faithfully simulates the behavior of a Java "Long". This
 * implementation is derived from LongLib in GWT.
 *
 * Constructs a 64-bit two's-complement integer, given its low and high 32-bit
 * values as *signed* integers.  See the from* functions below for more
 * convenient ways of constructing Longs.
 *
 * The internal representation of a Long is the two given signed, 32-bit values.
 * We use 32-bit pieces because these are the size of integers on which
 * Javascript performs bit-operations.  For operations like addition and
 * multiplication, we split each number into 16-bit pieces, which can easily be
 * multiplied within Javascript's floating-point representation without overflow
 * or change in sign.
 *
 * In the algorithms below, we frequently reduce the negative case to the
 * positive case by negating the input(s) and then post-processing the result.
 * Note that we must ALWAYS check specially whether those values are MIN_VALUE
 * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
 * a positive number, it overflows back into a negative).  Not handling this
 * case would often result in infinite recursion.
 *
 * @class
 * @param {number} low  the low (signed) 32 bits of the Long.
 * @param {number} high the high (signed) 32 bits of the Long.
 * @return {Long}
 */
function Long(low, high) {
  if (!(this instanceof Long)) return new Long(low, high);

  this._bsontype = 'Long';
  /**
   * @type {number}
   * @ignore
   */
  this.low_ = low | 0; // force into 32 signed bits.

  /**
   * @type {number}
   * @ignore
   */
  this.high_ = high | 0; // force into 32 signed bits.
}

/**
 * Return the int value.
 *
 * @method
 * @return {number} the value, assuming it is a 32-bit integer.
 */
Long.prototype.toInt = function() {
  return this.low_;
};

/**
 * Return the Number value.
 *
 * @method
 * @return {number} the closest floating-point representation to this value.
 */
Long.prototype.toNumber = function() {
  return this.high_ * Long.TWO_PWR_32_DBL_ + this.getLowBitsUnsigned();
};

/** Converts the Long to a BigInt (arbitrary precision). */
Long.prototype.toBigInt = function () {
  return BigInt(this.toString());
}

/**
 * Return the JSON value.
 *
 * @method
 * @return {string} the JSON representation.
 */
Long.prototype.toJSON = function() {
  return this.toString();
};

/**
 * Return the String value.
 *
 * @method
 * @param {number} [opt_radix] the radix in which the text should be written.
 * @return {string} the textual representation of this value.
 */
Long.prototype.toString = function(opt_radix) {
  var radix = opt_radix || 10;
  if (radix < 2 || 36 < radix) {
    throw Error('radix out of range: ' + radix);
  }

  if (this.isZero()) {
    return '0';
  }

  if (this.isNegative()) {
    if (this.equals(Long.MIN_VALUE)) {
      // We need to change the Long value before it can be negated, so we remove
      // the bottom-most digit in this base and then recurse to do the rest.
      var radixLong = Long.fromNumber(radix);
      var div = this.div(radixLong);
      var rem = div.multiply(radixLong).subtract(this);
      return div.toString(radix) + rem.toInt().toString(radix);
    } else {
      return '-' + this.negate().toString(radix);
    }
  }

  // Do several (6) digits each time through the loop, so as to
  // minimize the calls to the very expensive emulated div.
  var radixToPower = Long.fromNumber(Math.pow(radix, 6));

  rem = this;
  var result = '';

  while (!rem.isZero()) {
    var remDiv = rem.div(radixToPower);
    var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt();
    var digits = intval.toString(radix);

    rem = remDiv;
    if (rem.isZero()) {
      return digits + result;
    } else {
      while (digits.length < 6) {
        digits = '0' + digits;
      }
      result = '' + digits + result;
    }
  }
};

/**
 * Return the high 32-bits value.
 *
 * @method
 * @return {number} the high 32-bits as a signed value.
 */
Long.prototype.getHighBits = function() {
  return this.high_;
};

/**
 * Return the low 32-bits value.
 *
 * @method
 * @return {number} the low 32-bits as a signed value.
 */
Long.prototype.getLowBits = function() {
  return this.low_;
};

/**
 * Return the low unsigned 32-bits value.
 *
 * @method
 * @return {number} the low 32-bits as an unsigned value.
 */
Long.prototype.getLowBitsUnsigned = function() {
  return this.low_ >= 0 ? this.low_ : Long.TWO_PWR_32_DBL_ + this.low_;
};

/**
 * Returns the number of bits needed to represent the absolute value of this Long.
 *
 * @method
 * @return {number} Returns the number of bits needed to represent the absolute value of this Long.
 */
Long.prototype.getNumBitsAbs = function() {
  if (this.isNegative()) {
    if (this.equals(Long.MIN_VALUE)) {
      return 64;
    } else {
      return this.negate().getNumBitsAbs();
    }
  } else {
    var val = this.high_ !== 0 ? this.high_ : this.low_;
    for (var bit = 31; bit > 0; bit--) {
      if ((val & (1 << bit)) !== 0) {
        break;
      }
    }
    return this.high_ !== 0 ? bit + 33 : bit + 1;
  }
};

/**
 * Return whether this value is zero.
 *
 * @method
 * @return {boolean} whether this value is zero.
 */
Long.prototype.isZero = function() {
  return this.high_ === 0 && this.low_ === 0;
};

/**
 * Return whether this value is negative.
 *
 * @method
 * @return {boolean} whether this value is negative.
 */
Long.prototype.isNegative = function() {
  return this.high_ < 0;
};

/**
 * Return whether this value is odd.
 *
 * @method
 * @return {boolean} whether this value is odd.
 */
Long.prototype.isOdd = function() {
  return (this.low_ & 1) === 1;
};

/**
 * Return whether this Long equals the other
 *
 * @method
 * @param {Long} other Long to compare against.
 * @return {boolean} whether this Long equals the other
 */
Long.prototype.equals = function(other) {
  return this.high_ === other.high_ && this.low_ === other.low_;
};

/**
 * Return whether this Long does not equal the other.
 *
 * @method
 * @param {Long} other Long to compare against.
 * @return {boolean} whether this Long does not equal the other.
 */
Long.prototype.notEquals = function(other) {
  return this.high_ !== other.high_ || this.low_ !== other.low_;
};

/**
 * Return whether this Long is less than the other.
 *
 * @method
 * @param {Long} other Long to compare against.
 * @return {boolean} whether this Long is less than the other.
 */
Long.prototype.lessThan = function(other) {
  return this.compare(other) < 0;
};

/**
 * Return whether this Long is less than or equal to the other.
 *
 * @method
 * @param {Long} other Long to compare against.
 * @return {boolean} whether this Long is less than or equal to the other.
 */
Long.prototype.lessThanOrEqual = function(other) {
  return this.compare(other) <= 0;
};

/**
 * Return whether this Long is greater than the other.
 *
 * @method
 * @param {Long} other Long to compare against.
 * @return {boolean} whether this Long is greater than the other.
 */
Long.prototype.greaterThan = function(other) {
  return this.compare(other) > 0;
};

/**
 * Return whether this Long is greater than or equal to the other.
 *
 * @method
 * @param {Long} other Long to compare against.
 * @return {boolean} whether this Long is greater than or equal to the other.
 */
Long.prototype.greaterThanOrEqual = function(other) {
  return this.compare(other) >= 0;
};

/**
 * Compares this Long with the given one.
 *
 * @method
 * @param {Long} other Long to compare against.
 * @return {boolean} 0 if they are the same, 1 if the this is greater, and -1 if the given one is greater.
 */
Long.prototype.compare = function(other) {
  if (this.equals(other)) {
    return 0;
  }

  var thisNeg = this.isNegative();
  var otherNeg = other.isNegative();
  if (thisNeg && !otherNeg) {
    return -1;
  }
  if (!thisNeg && otherNeg) {
    return 1;
  }

  // at this point, the signs are the same, so subtraction will not overflow
  if (this.subtract(other).isNegative()) {
    return -1;
  } else {
    return 1;
  }
};

/**
 * The negation of this value.
 *
 * @method
 * @return {Long} the negation of this value.
 */
Long.prototype.negate = function() {
  if (this.equals(Long.MIN_VALUE)) {
    return Long.MIN_VALUE;
  } else {
    return this.not().add(Long.ONE);
  }
};

/**
 * Returns the sum of this and the given Long.
 *
 * @method
 * @param {Long} other Long to add to this one.
 * @return {Long} the sum of this and the given Long.
 */
Long.prototype.add = function(other) {
  // Divide each number into 4 chunks of 16 bits, and then sum the chunks.

  var a48 = this.high_ >>> 16;
  var a32 = this.high_ & 0xffff;
  var a16 = this.low_ >>> 16;
  var a00 = this.low_ & 0xffff;

  var b48 = other.high_ >>> 16;
  var b32 = other.high_ & 0xffff;
  var b16 = other.low_ >>> 16;
  var b00 = other.low_ & 0xffff;

  var c48 = 0,
    c32 = 0,
    c16 = 0,
    c00 = 0;
  c00 += a00 + b00;
  c16 += c00 >>> 16;
  c00 &= 0xffff;
  c16 += a16 + b16;
  c32 += c16 >>> 16;
  c16 &= 0xffff;
  c32 += a32 + b32;
  c48 += c32 >>> 16;
  c32 &= 0xffff;
  c48 += a48 + b48;
  c48 &= 0xffff;
  return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
};

/**
 * Returns the difference of this and the given Long.
 *
 * @method
 * @param {Long} other Long to subtract from this.
 * @return {Long} the difference of this and the given Long.
 */
Long.prototype.subtract = function(other) {
  return this.add(other.negate());
};

/**
 * Returns the product of this and the given Long.
 *
 * @method
 * @param {Long} other Long to multiply with this.
 * @return {Long} the product of this and the other.
 */
Long.prototype.multiply = function(other) {
  if (this.isZero()) {
    return Long.ZERO;
  } else if (other.isZero()) {
    return Long.ZERO;
  }

  if (this.equals(Long.MIN_VALUE)) {
    return other.isOdd() ? Long.MIN_VALUE : Long.ZERO;
  } else if (other.equals(Long.MIN_VALUE)) {
    return this.isOdd() ? Long.MIN_VALUE : Long.ZERO;
  }

  if (this.isNegative()) {
    if (other.isNegative()) {
      return this.negate().multiply(other.negate());
    } else {
      return this.negate()
        .multiply(other)
        .negate();
    }
  } else if (other.isNegative()) {
    return this.multiply(other.negate()).negate();
  }

  // If both Longs are small, use float multiplication
  if (this.lessThan(Long.TWO_PWR_24_) && other.lessThan(Long.TWO_PWR_24_)) {
    return Long.fromNumber(this.toNumber() * other.toNumber());
  }

  // Divide each Long into 4 chunks of 16 bits, and then add up 4x4 products.
  // We can skip products that would overflow.

  var a48 = this.high_ >>> 16;
  var a32 = this.high_ & 0xffff;
  var a16 = this.low_ >>> 16;
  var a00 = this.low_ & 0xffff;

  var b48 = other.high_ >>> 16;
  var b32 = other.high_ & 0xffff;
  var b16 = other.low_ >>> 16;
  var b00 = other.low_ & 0xffff;

  var c48 = 0,
    c32 = 0,
    c16 = 0,
    c00 = 0;
  c00 += a00 * b00;
  c16 += c00 >>> 16;
  c00 &= 0xffff;
  c16 += a16 * b00;
  c32 += c16 >>> 16;
  c16 &= 0xffff;
  c16 += a00 * b16;
  c32 += c16 >>> 16;
  c16 &= 0xffff;
  c32 += a32 * b00;
  c48 += c32 >>> 16;
  c32 &= 0xffff;
  c32 += a16 * b16;
  c48 += c32 >>> 16;
  c32 &= 0xffff;
  c32 += a00 * b32;
  c48 += c32 >>> 16;
  c32 &= 0xffff;
  c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
  c48 &= 0xffff;
  return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
};

/**
 * Returns this Long divided by the given one.
 *
 * @method
 * @param {Long} other Long by which to divide.
 * @return {Long} this Long divided by the given one.
 */
Long.prototype.div = function(other) {
  if (other.isZero()) {
    throw Error('division by zero');
  } else if (this.isZero()) {
    return Long.ZERO;
  }

  if (this.equals(Long.MIN_VALUE)) {
    if (other.equals(Long.ONE) || other.equals(Long.NEG_ONE)) {
      return Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE
    } else if (other.equals(Long.MIN_VALUE)) {
      return Long.ONE;
    } else {
      // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
      var halfThis = this.shiftRight(1);
      var approx = halfThis.div(other).shiftLeft(1);
      if (approx.equals(Long.ZERO)) {
        return other.isNegative() ? Long.ONE : Long.NEG_ONE;
      } else {
        var rem = this.subtract(other.multiply(approx));
        var result = approx.add(rem.div(other));
        return result;
      }
    }
  } else if (other.equals(Long.MIN_VALUE)) {
    return Long.ZERO;
  }

  if (this.isNegative()) {
    if (other.isNegative()) {
      return this.negate().div(other.negate());
    } else {
      return this.negate()
        .div(other)
        .negate();
    }
  } else if (other.isNegative()) {
    return this.div(other.negate()).negate();
  }

  // Repeat the following until the remainder is less than other:  find a
  // floating-point that approximates remainder / other *from below*, add this
  // into the result, and subtract it from the remainder.  It is critical that
  // the approximate value is less than or equal to the real value so that the
  // remainder never becomes negative.
  var res = Long.ZERO;
  rem = this;
  while (rem.greaterThanOrEqual(other)) {
    // Approximate the result of division. This may be a little greater or
    // smaller than the actual value.
    approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));

    // We will tweak the approximate result by changing it in the 48-th digit or
    // the smallest non-fractional digit, whichever is larger.
    var log2 = Math.ceil(Math.log(approx) / Math.LN2);
    var delta = log2 <= 48 ? 1 : Math.pow(2, log2 - 48);

    // Decrease the approximation until it is smaller than the remainder.  Note
    // that if it is too large, the product overflows and is negative.
    var approxRes = Long.fromNumber(approx);
    var approxRem = approxRes.multiply(other);
    while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
      approx -= delta;
      approxRes = Long.fromNumber(approx);
      approxRem = approxRes.multiply(other);
    }

    // We know the answer can't be zero... and actually, zero would cause
    // infinite recursion since we would make no progress.
    if (approxRes.isZero()) {
      approxRes = Long.ONE;
    }

    res = res.add(approxRes);
    rem = rem.subtract(approxRem);
  }
  return res;
};

/**
 * Returns this Long modulo the given one.
 *
 * @method
 * @param {Long} other Long by which to mod.
 * @return {Long} this Long modulo the given one.
 */
Long.prototype.modulo = function(other) {
  return this.subtract(this.div(other).multiply(other));
};

/**
 * The bitwise-NOT of this value.
 *
 * @method
 * @return {Long} the bitwise-NOT of this value.
 */
Long.prototype.not = function() {
  return Long.fromBits(~this.low_, ~this.high_);
};

/**
 * Returns the bitwise-AND of this Long and the given one.
 *
 * @method
 * @param {Long} other the Long with which to AND.
 * @return {Long} the bitwise-AND of this and the other.
 */
Long.prototype.and = function(other) {
  return Long.fromBits(this.low_ & other.low_, this.high_ & other.high_);
};

/**
 * Returns the bitwise-OR of this Long and the given one.
 *
 * @method
 * @param {Long} other the Long with which to OR.
 * @return {Long} the bitwise-OR of this and the other.
 */
Long.prototype.or = function(other) {
  return Long.fromBits(this.low_ | other.low_, this.high_ | other.high_);
};

/**
 * Returns the bitwise-XOR of this Long and the given one.
 *
 * @method
 * @param {Long} other the Long with which to XOR.
 * @return {Long} the bitwise-XOR of this and the other.
 */
Long.prototype.xor = function(other) {
  return Long.fromBits(this.low_ ^ other.low_, this.high_ ^ other.high_);
};

/**
 * Returns this Long with bits shifted to the left by the given amount.
 *
 * @method
 * @param {number} numBits the number of bits by which to shift.
 * @return {Long} this shifted to the left by the given amount.
 */
Long.prototype.shiftLeft = function(numBits) {
  numBits &= 63;
  if (numBits === 0) {
    return this;
  } else {
    var low = this.low_;
    if (numBits < 32) {
      var high = this.high_;
      return Long.fromBits(low << numBits, (high << numBits) | (low >>> (32 - numBits)));
    } else {
      return Long.fromBits(0, low << (numBits - 32));
    }
  }
};

/**
 * Returns this Long with bits shifted to the right by the given amount.
 *
 * @method
 * @param {number} numBits the number of bits by which to shift.
 * @return {Long} this shifted to the right by the given amount.
 */
Long.prototype.shiftRight = function(numBits) {
  numBits &= 63;
  if (numBits === 0) {
    return this;
  } else {
    var high = this.high_;
    if (numBits < 32) {
      var low = this.low_;
      return Long.fromBits((low >>> numBits) | (high << (32 - numBits)), high >> numBits);
    } else {
      return Long.fromBits(high >> (numBits - 32), high >= 0 ? 0 : -1);
    }
  }
};

/**
 * Returns this Long with bits shifted to the right by the given amount, with the new top bits matching the current sign bit.
 *
 * @method
 * @param {number} numBits the number of bits by which to shift.
 * @return {Long} this shifted to the right by the given amount, with zeros placed into the new leading bits.
 */
Long.prototype.shiftRightUnsigned = function(numBits) {
  numBits &= 63;
  if (numBits === 0) {
    return this;
  } else {
    var high = this.high_;
    if (numBits < 32) {
      var low = this.low_;
      return Long.fromBits((low >>> numBits) | (high << (32 - numBits)), high >>> numBits);
    } else if (numBits === 32) {
      return Long.fromBits(high, 0);
    } else {
      return Long.fromBits(high >>> (numBits - 32), 0);
    }
  }
};

/**
 * Returns a Long representing the given (32-bit) integer value.
 *
 * @method
 * @param {number} value the 32-bit integer in question.
 * @return {Long} the corresponding Long value.
 */
Long.fromInt = function(value) {
  if (-128 <= value && value < 128) {
    var cachedObj = Long.INT_CACHE_[value];
    if (cachedObj) {
      return cachedObj;
    }
  }

  var obj = new Long(value | 0, value < 0 ? -1 : 0);
  if (-128 <= value && value < 128) {
    Long.INT_CACHE_[value] = obj;
  }
  return obj;
};

/**
 * Returns a Long representing the given value, provided that it is a finite number. Otherwise, zero is returned.
 *
 * @method
 * @param {number} value the number in question.
 * @return {Long} the corresponding Long value.
 */
Long.fromNumber = function(value) {
  if (isNaN(value) || !isFinite(value)) {
    return Long.ZERO;
  } else if (value <= -Long.TWO_PWR_63_DBL_) {
    return Long.MIN_VALUE;
  } else if (value + 1 >= Long.TWO_PWR_63_DBL_) {
    return Long.MAX_VALUE;
  } else if (value < 0) {
    return Long.fromNumber(-value).negate();
  } else {
    return new Long((value % Long.TWO_PWR_32_DBL_) | 0, (value / Long.TWO_PWR_32_DBL_) | 0);
  }
};

/**
 * Returns a Long representing the given value, provided that it is a finite number. Otherwise, zero is returned.
 * @param {bigint} value - The number in question
 * @returns {Long} The corresponding Long value
 */
Long.fromBigInt =  function(value) {
  return Long.fromString(value.toString(10), 10);
}

/**
 * Returns a Long representing the 64-bit integer that comes by concatenating the given high and low bits. Each is assumed to use 32 bits.
 *
 * @method
 * @param {number} lowBits the low 32-bits.
 * @param {number} highBits the high 32-bits.
 * @return {Long} the corresponding Long value.
 */
Long.fromBits = function(lowBits, highBits) {
  return new Long(lowBits, highBits);
};

/**
 * Returns a Long representation of the given string, written using the given radix.
 *
 * @method
 * @param {string} str the textual representation of the Long.
 * @param {number} opt_radix the radix in which the text is written.
 * @return {Long} the corresponding Long value.
 */
Long.fromString = function(str, opt_radix) {
  if (str.length === 0) {
    throw Error('number format error: empty string');
  }

  var radix = opt_radix || 10;
  if (radix < 2 || 36 < radix) {
    throw Error('radix out of range: ' + radix);
  }

  if (str.charAt(0) === '-') {
    return Long.fromString(str.substring(1), radix).negate();
  } else if (str.indexOf('-') >= 0) {
    throw Error('number format error: interior "-" character: ' + str);
  }

  // Do several (8) digits each time through the loop, so as to
  // minimize the calls to the very expensive emulated div.
  var radixToPower = Long.fromNumber(Math.pow(radix, 8));

  var result = Long.ZERO;
  for (var i = 0; i < str.length; i += 8) {
    var size = Math.min(8, str.length - i);
    var value = parseInt(str.substring(i, i + size), radix);
    if (size < 8) {
      var power = Long.fromNumber(Math.pow(radix, size));
      result = result.multiply(power).add(Long.fromNumber(value));
    } else {
      result = result.multiply(radixToPower);
      result = result.add(Long.fromNumber(value));
    }
  }
  return result;
};

// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
// from* methods on which they depend.

/**
 * A cache of the Long representations of small integer values.
 * @type {Object}
 * @ignore
 */
Long.INT_CACHE_ = {};

// NOTE: the compiler should inline these constant values below and then remove
// these variables, so there should be no runtime penalty for these.

/**
 * Number used repeated below in calculations.  This must appear before the
 * first call to any from* function below.
 * @type {number}
 * @ignore
 */
Long.TWO_PWR_16_DBL_ = 1 << 16;

/**
 * @type {number}
 * @ignore
 */
Long.TWO_PWR_24_DBL_ = 1 << 24;

/**
 * @type {number}
 * @ignore
 */
Long.TWO_PWR_32_DBL_ = Long.TWO_PWR_16_DBL_ * Long.TWO_PWR_16_DBL_;

/**
 * @type {number}
 * @ignore
 */
Long.TWO_PWR_31_DBL_ = Long.TWO_PWR_32_DBL_ / 2;

/**
 * @type {number}
 * @ignore
 */
Long.TWO_PWR_48_DBL_ = Long.TWO_PWR_32_DBL_ * Long.TWO_PWR_16_DBL_;

/**
 * @type {number}
 * @ignore
 */
Long.TWO_PWR_64_DBL_ = Long.TWO_PWR_32_DBL_ * Long.TWO_PWR_32_DBL_;

/**
 * @type {number}
 * @ignore
 */
Long.TWO_PWR_63_DBL_ = Long.TWO_PWR_64_DBL_ / 2;

/** @type {Long} */
Long.ZERO = Long.fromInt(0);

/** @type {Long} */
Long.ONE = Long.fromInt(1);

/** @type {Long} */
Long.NEG_ONE = Long.fromInt(-1);

/** @type {Long} */
Long.MAX_VALUE = Long.fromBits(0xffffffff | 0, 0x7fffffff | 0);

/** @type {Long} */
Long.MIN_VALUE = Long.fromBits(0, 0x80000000 | 0);

/**
 * @type {Long}
 * @ignore
 */
Long.TWO_PWR_24_ = Long.fromInt(1 << 24);

/**
 * Expose.
 */
module.exports = Long;
module.exports.Long = Long;