emit.js 36.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
"use strict";

var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
var _assert = _interopRequireDefault(require("assert"));
var leap = _interopRequireWildcard(require("./leap"));
var meta = _interopRequireWildcard(require("./meta"));
var util = _interopRequireWildcard(require("./util"));
function _getRequireWildcardCache(nodeInterop) { if (typeof WeakMap !== "function") return null; var cacheBabelInterop = new WeakMap(); var cacheNodeInterop = new WeakMap(); return (_getRequireWildcardCache = function _getRequireWildcardCache(nodeInterop) { return nodeInterop ? cacheNodeInterop : cacheBabelInterop; })(nodeInterop); }
function _interopRequireWildcard(obj, nodeInterop) { if (!nodeInterop && obj && obj.__esModule) { return obj; } if (obj === null || typeof obj !== "object" && typeof obj !== "function") { return { "default": obj }; } var cache = _getRequireWildcardCache(nodeInterop); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (key !== "default" && Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj["default"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }
/**
 * Copyright (c) 2014-present, Facebook, Inc.
 *
 * This source code is licensed under the MIT license found in the
 * LICENSE file in the root directory of this source tree.
 */

var hasOwn = Object.prototype.hasOwnProperty;
function Emitter(contextId) {
  _assert["default"].ok(this instanceof Emitter);
  util.getTypes().assertIdentifier(contextId);

  // Used to generate unique temporary names.
  this.nextTempId = 0;

  // In order to make sure the context object does not collide with
  // anything in the local scope, we might have to rename it, so we
  // refer to it symbolically instead of just assuming that it will be
  // called "context".
  this.contextId = contextId;

  // An append-only list of Statements that grows each time this.emit is
  // called.
  this.listing = [];

  // A sparse array whose keys correspond to locations in this.listing
  // that have been marked as branch/jump targets.
  this.marked = [true];
  this.insertedLocs = new Set();

  // The last location will be marked when this.getDispatchLoop is
  // called.
  this.finalLoc = this.loc();

  // A list of all leap.TryEntry statements emitted.
  this.tryEntries = [];

  // Each time we evaluate the body of a loop, we tell this.leapManager
  // to enter a nested loop context that determines the meaning of break
  // and continue statements therein.
  this.leapManager = new leap.LeapManager(this);
}
var Ep = Emitter.prototype;
exports.Emitter = Emitter;

// Offsets into this.listing that could be used as targets for branches or
// jumps are represented as numeric Literal nodes. This representation has
// the amazingly convenient benefit of allowing the exact value of the
// location to be determined at any time, even after generating code that
// refers to the location.
Ep.loc = function () {
  var l = util.getTypes().numericLiteral(-1);
  this.insertedLocs.add(l);
  return l;
};
Ep.getInsertedLocs = function () {
  return this.insertedLocs;
};
Ep.getContextId = function () {
  return util.getTypes().clone(this.contextId);
};

// Sets the exact value of the given location to the offset of the next
// Statement emitted.
Ep.mark = function (loc) {
  util.getTypes().assertLiteral(loc);
  var index = this.listing.length;
  if (loc.value === -1) {
    loc.value = index;
  } else {
    // Locations can be marked redundantly, but their values cannot change
    // once set the first time.
    _assert["default"].strictEqual(loc.value, index);
  }
  this.marked[index] = true;
  return loc;
};
Ep.emit = function (node) {
  var t = util.getTypes();
  if (t.isExpression(node)) {
    node = t.expressionStatement(node);
  }
  t.assertStatement(node);
  this.listing.push(node);
};

// Shorthand for emitting assignment statements. This will come in handy
// for assignments to temporary variables.
Ep.emitAssign = function (lhs, rhs) {
  this.emit(this.assign(lhs, rhs));
  return lhs;
};

// Shorthand for an assignment statement.
Ep.assign = function (lhs, rhs) {
  var t = util.getTypes();
  return t.expressionStatement(t.assignmentExpression("=", t.cloneDeep(lhs), rhs));
};

// Convenience function for generating expressions like context.next,
// context.sent, and context.rval.
Ep.contextProperty = function (name, computed) {
  var t = util.getTypes();
  return t.memberExpression(this.getContextId(), computed ? t.stringLiteral(name) : t.identifier(name), !!computed);
};

// Shorthand for setting context.rval and jumping to `context.stop()`.
Ep.stop = function (rval) {
  if (rval) {
    this.setReturnValue(rval);
  }
  this.jump(this.finalLoc);
};
Ep.setReturnValue = function (valuePath) {
  util.getTypes().assertExpression(valuePath.value);
  this.emitAssign(this.contextProperty("rval"), this.explodeExpression(valuePath));
};
Ep.clearPendingException = function (tryLoc, assignee) {
  var t = util.getTypes();
  t.assertLiteral(tryLoc);
  var catchCall = t.callExpression(this.contextProperty("catch", true), [t.clone(tryLoc)]);
  if (assignee) {
    this.emitAssign(assignee, catchCall);
  } else {
    this.emit(catchCall);
  }
};

// Emits code for an unconditional jump to the given location, even if the
// exact value of the location is not yet known.
Ep.jump = function (toLoc) {
  this.emitAssign(this.contextProperty("next"), toLoc);
  this.emit(util.getTypes().breakStatement());
};

// Conditional jump.
Ep.jumpIf = function (test, toLoc) {
  var t = util.getTypes();
  t.assertExpression(test);
  t.assertLiteral(toLoc);
  this.emit(t.ifStatement(test, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()])));
};

// Conditional jump, with the condition negated.
Ep.jumpIfNot = function (test, toLoc) {
  var t = util.getTypes();
  t.assertExpression(test);
  t.assertLiteral(toLoc);
  var negatedTest;
  if (t.isUnaryExpression(test) && test.operator === "!") {
    // Avoid double negation.
    negatedTest = test.argument;
  } else {
    negatedTest = t.unaryExpression("!", test);
  }
  this.emit(t.ifStatement(negatedTest, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()])));
};

// Returns a unique MemberExpression that can be used to store and
// retrieve temporary values. Since the object of the member expression is
// the context object, which is presumed to coexist peacefully with all
// other local variables, and since we just increment `nextTempId`
// monotonically, uniqueness is assured.
Ep.makeTempVar = function () {
  return this.contextProperty("t" + this.nextTempId++);
};
Ep.getContextFunction = function (id) {
  var t = util.getTypes();
  return t.functionExpression(id || null /*Anonymous*/, [this.getContextId()], t.blockStatement([this.getDispatchLoop()]), false,
  // Not a generator anymore!
  false // Nor an expression.
  );
};

// Turns this.listing into a loop of the form
//
//   while (1) switch (context.next) {
//   case 0:
//   ...
//   case n:
//     return context.stop();
//   }
//
// Each marked location in this.listing will correspond to one generated
// case statement.
Ep.getDispatchLoop = function () {
  var self = this;
  var t = util.getTypes();
  var cases = [];
  var current;

  // If we encounter a break, continue, or return statement in a switch
  // case, we can skip the rest of the statements until the next case.
  var alreadyEnded = false;
  self.listing.forEach(function (stmt, i) {
    if (self.marked.hasOwnProperty(i)) {
      cases.push(t.switchCase(t.numericLiteral(i), current = []));
      alreadyEnded = false;
    }
    if (!alreadyEnded) {
      current.push(stmt);
      if (t.isCompletionStatement(stmt)) alreadyEnded = true;
    }
  });

  // Now that we know how many statements there will be in this.listing,
  // we can finally resolve this.finalLoc.value.
  this.finalLoc.value = this.listing.length;
  cases.push(t.switchCase(this.finalLoc, [
    // Intentionally fall through to the "end" case...
  ]),
  // So that the runtime can jump to the final location without having
  // to know its offset, we provide the "end" case as a synonym.
  t.switchCase(t.stringLiteral("end"), [
  // This will check/clear both context.thrown and context.rval.
  t.returnStatement(t.callExpression(this.contextProperty("stop"), []))]));
  return t.whileStatement(t.numericLiteral(1), t.switchStatement(t.assignmentExpression("=", this.contextProperty("prev"), this.contextProperty("next")), cases));
};
Ep.getTryLocsList = function () {
  if (this.tryEntries.length === 0) {
    // To avoid adding a needless [] to the majority of runtime.wrap
    // argument lists, force the caller to handle this case specially.
    return null;
  }
  var t = util.getTypes();
  var lastLocValue = 0;
  return t.arrayExpression(this.tryEntries.map(function (tryEntry) {
    var thisLocValue = tryEntry.firstLoc.value;
    _assert["default"].ok(thisLocValue >= lastLocValue, "try entries out of order");
    lastLocValue = thisLocValue;
    var ce = tryEntry.catchEntry;
    var fe = tryEntry.finallyEntry;
    var locs = [tryEntry.firstLoc,
    // The null here makes a hole in the array.
    ce ? ce.firstLoc : null];
    if (fe) {
      locs[2] = fe.firstLoc;
      locs[3] = fe.afterLoc;
    }
    return t.arrayExpression(locs.map(function (loc) {
      return loc && t.clone(loc);
    }));
  }));
};

// All side effects must be realized in order.

// If any subexpression harbors a leap, all subexpressions must be
// neutered of side effects.

// No destructive modification of AST nodes.

Ep.explode = function (path, ignoreResult) {
  var t = util.getTypes();
  var node = path.node;
  var self = this;
  t.assertNode(node);
  if (t.isDeclaration(node)) throw getDeclError(node);
  if (t.isStatement(node)) return self.explodeStatement(path);
  if (t.isExpression(node)) return self.explodeExpression(path, ignoreResult);
  switch (node.type) {
    case "Program":
      return path.get("body").map(self.explodeStatement, self);
    case "VariableDeclarator":
      throw getDeclError(node);

    // These node types should be handled by their parent nodes
    // (ObjectExpression, SwitchStatement, and TryStatement, respectively).
    case "Property":
    case "SwitchCase":
    case "CatchClause":
      throw new Error(node.type + " nodes should be handled by their parents");
    default:
      throw new Error("unknown Node of type " + JSON.stringify(node.type));
  }
};
function getDeclError(node) {
  return new Error("all declarations should have been transformed into " + "assignments before the Exploder began its work: " + JSON.stringify(node));
}
Ep.explodeStatement = function (path, labelId) {
  var t = util.getTypes();
  var stmt = path.node;
  var self = this;
  var before, after, head;
  t.assertStatement(stmt);
  if (labelId) {
    t.assertIdentifier(labelId);
  } else {
    labelId = null;
  }

  // Explode BlockStatement nodes even if they do not contain a yield,
  // because we don't want or need the curly braces.
  if (t.isBlockStatement(stmt)) {
    path.get("body").forEach(function (path) {
      self.explodeStatement(path);
    });
    return;
  }
  if (!meta.containsLeap(stmt)) {
    // Technically we should be able to avoid emitting the statement
    // altogether if !meta.hasSideEffects(stmt), but that leads to
    // confusing generated code (for instance, `while (true) {}` just
    // disappears) and is probably a more appropriate job for a dedicated
    // dead code elimination pass.
    self.emit(stmt);
    return;
  }
  switch (stmt.type) {
    case "ExpressionStatement":
      self.explodeExpression(path.get("expression"), true);
      break;
    case "LabeledStatement":
      after = this.loc();

      // Did you know you can break from any labeled block statement or
      // control structure? Well, you can! Note: when a labeled loop is
      // encountered, the leap.LabeledEntry created here will immediately
      // enclose a leap.LoopEntry on the leap manager's stack, and both
      // entries will have the same label. Though this works just fine, it
      // may seem a bit redundant. In theory, we could check here to
      // determine if stmt knows how to handle its own label; for example,
      // stmt happens to be a WhileStatement and so we know it's going to
      // establish its own LoopEntry when we explode it (below). Then this
      // LabeledEntry would be unnecessary. Alternatively, we might be
      // tempted not to pass stmt.label down into self.explodeStatement,
      // because we've handled the label here, but that's a mistake because
      // labeled loops may contain labeled continue statements, which is not
      // something we can handle in this generic case. All in all, I think a
      // little redundancy greatly simplifies the logic of this case, since
      // it's clear that we handle all possible LabeledStatements correctly
      // here, regardless of whether they interact with the leap manager
      // themselves. Also remember that labels and break/continue-to-label
      // statements are rare, and all of this logic happens at transform
      // time, so it has no additional runtime cost.
      self.leapManager.withEntry(new leap.LabeledEntry(after, stmt.label), function () {
        self.explodeStatement(path.get("body"), stmt.label);
      });
      self.mark(after);
      break;
    case "WhileStatement":
      before = this.loc();
      after = this.loc();
      self.mark(before);
      self.jumpIfNot(self.explodeExpression(path.get("test")), after);
      self.leapManager.withEntry(new leap.LoopEntry(after, before, labelId), function () {
        self.explodeStatement(path.get("body"));
      });
      self.jump(before);
      self.mark(after);
      break;
    case "DoWhileStatement":
      var first = this.loc();
      var test = this.loc();
      after = this.loc();
      self.mark(first);
      self.leapManager.withEntry(new leap.LoopEntry(after, test, labelId), function () {
        self.explode(path.get("body"));
      });
      self.mark(test);
      self.jumpIf(self.explodeExpression(path.get("test")), first);
      self.mark(after);
      break;
    case "ForStatement":
      head = this.loc();
      var update = this.loc();
      after = this.loc();
      if (stmt.init) {
        // We pass true here to indicate that if stmt.init is an expression
        // then we do not care about its result.
        self.explode(path.get("init"), true);
      }
      self.mark(head);
      if (stmt.test) {
        self.jumpIfNot(self.explodeExpression(path.get("test")), after);
      } else {
        // No test means continue unconditionally.
      }
      self.leapManager.withEntry(new leap.LoopEntry(after, update, labelId), function () {
        self.explodeStatement(path.get("body"));
      });
      self.mark(update);
      if (stmt.update) {
        // We pass true here to indicate that if stmt.update is an
        // expression then we do not care about its result.
        self.explode(path.get("update"), true);
      }
      self.jump(head);
      self.mark(after);
      break;
    case "TypeCastExpression":
      return self.explodeExpression(path.get("expression"));
    case "ForInStatement":
      head = this.loc();
      after = this.loc();
      var keyIterNextFn = self.makeTempVar();
      self.emitAssign(keyIterNextFn, t.callExpression(util.runtimeProperty("keys"), [self.explodeExpression(path.get("right"))]));
      self.mark(head);
      var keyInfoTmpVar = self.makeTempVar();
      self.jumpIf(t.memberExpression(t.assignmentExpression("=", keyInfoTmpVar, t.callExpression(t.cloneDeep(keyIterNextFn), [])), t.identifier("done"), false), after);
      self.emitAssign(stmt.left, t.memberExpression(t.cloneDeep(keyInfoTmpVar), t.identifier("value"), false));
      self.leapManager.withEntry(new leap.LoopEntry(after, head, labelId), function () {
        self.explodeStatement(path.get("body"));
      });
      self.jump(head);
      self.mark(after);
      break;
    case "BreakStatement":
      self.emitAbruptCompletion({
        type: "break",
        target: self.leapManager.getBreakLoc(stmt.label)
      });
      break;
    case "ContinueStatement":
      self.emitAbruptCompletion({
        type: "continue",
        target: self.leapManager.getContinueLoc(stmt.label)
      });
      break;
    case "SwitchStatement":
      // Always save the discriminant into a temporary variable in case the
      // test expressions overwrite values like context.sent.
      var disc = self.emitAssign(self.makeTempVar(), self.explodeExpression(path.get("discriminant")));
      after = this.loc();
      var defaultLoc = this.loc();
      var condition = defaultLoc;
      var caseLocs = [];

      // If there are no cases, .cases might be undefined.
      var cases = stmt.cases || [];
      for (var i = cases.length - 1; i >= 0; --i) {
        var c = cases[i];
        t.assertSwitchCase(c);
        if (c.test) {
          condition = t.conditionalExpression(t.binaryExpression("===", t.cloneDeep(disc), c.test), caseLocs[i] = this.loc(), condition);
        } else {
          caseLocs[i] = defaultLoc;
        }
      }
      var discriminant = path.get("discriminant");
      util.replaceWithOrRemove(discriminant, condition);
      self.jump(self.explodeExpression(discriminant));
      self.leapManager.withEntry(new leap.SwitchEntry(after), function () {
        path.get("cases").forEach(function (casePath) {
          var i = casePath.key;
          self.mark(caseLocs[i]);
          casePath.get("consequent").forEach(function (path) {
            self.explodeStatement(path);
          });
        });
      });
      self.mark(after);
      if (defaultLoc.value === -1) {
        self.mark(defaultLoc);
        _assert["default"].strictEqual(after.value, defaultLoc.value);
      }
      break;
    case "IfStatement":
      var elseLoc = stmt.alternate && this.loc();
      after = this.loc();
      self.jumpIfNot(self.explodeExpression(path.get("test")), elseLoc || after);
      self.explodeStatement(path.get("consequent"));
      if (elseLoc) {
        self.jump(after);
        self.mark(elseLoc);
        self.explodeStatement(path.get("alternate"));
      }
      self.mark(after);
      break;
    case "ReturnStatement":
      self.emitAbruptCompletion({
        type: "return",
        value: self.explodeExpression(path.get("argument"))
      });
      break;
    case "WithStatement":
      throw new Error("WithStatement not supported in generator functions.");
    case "TryStatement":
      after = this.loc();
      var handler = stmt.handler;
      var catchLoc = handler && this.loc();
      var catchEntry = catchLoc && new leap.CatchEntry(catchLoc, handler.param);
      var finallyLoc = stmt.finalizer && this.loc();
      var finallyEntry = finallyLoc && new leap.FinallyEntry(finallyLoc, after);
      var tryEntry = new leap.TryEntry(self.getUnmarkedCurrentLoc(), catchEntry, finallyEntry);
      self.tryEntries.push(tryEntry);
      self.updateContextPrevLoc(tryEntry.firstLoc);
      self.leapManager.withEntry(tryEntry, function () {
        self.explodeStatement(path.get("block"));
        if (catchLoc) {
          if (finallyLoc) {
            // If we have both a catch block and a finally block, then
            // because we emit the catch block first, we need to jump over
            // it to the finally block.
            self.jump(finallyLoc);
          } else {
            // If there is no finally block, then we need to jump over the
            // catch block to the fall-through location.
            self.jump(after);
          }
          self.updateContextPrevLoc(self.mark(catchLoc));
          var bodyPath = path.get("handler.body");
          var safeParam = self.makeTempVar();
          self.clearPendingException(tryEntry.firstLoc, safeParam);
          bodyPath.traverse(catchParamVisitor, {
            getSafeParam: function getSafeParam() {
              return t.cloneDeep(safeParam);
            },
            catchParamName: handler.param.name
          });
          self.leapManager.withEntry(catchEntry, function () {
            self.explodeStatement(bodyPath);
          });
        }
        if (finallyLoc) {
          self.updateContextPrevLoc(self.mark(finallyLoc));
          self.leapManager.withEntry(finallyEntry, function () {
            self.explodeStatement(path.get("finalizer"));
          });
          self.emit(t.returnStatement(t.callExpression(self.contextProperty("finish"), [finallyEntry.firstLoc])));
        }
      });
      self.mark(after);
      break;
    case "ThrowStatement":
      self.emit(t.throwStatement(self.explodeExpression(path.get("argument"))));
      break;
    case "ClassDeclaration":
      self.emit(self.explodeClass(path));
      break;
    default:
      throw new Error("unknown Statement of type " + JSON.stringify(stmt.type));
  }
};
var catchParamVisitor = {
  Identifier: function Identifier(path, state) {
    if (path.node.name === state.catchParamName && util.isReference(path)) {
      util.replaceWithOrRemove(path, state.getSafeParam());
    }
  },
  Scope: function Scope(path, state) {
    if (path.scope.hasOwnBinding(state.catchParamName)) {
      // Don't descend into nested scopes that shadow the catch
      // parameter with their own declarations.
      path.skip();
    }
  }
};
Ep.emitAbruptCompletion = function (record) {
  if (!isValidCompletion(record)) {
    _assert["default"].ok(false, "invalid completion record: " + JSON.stringify(record));
  }
  _assert["default"].notStrictEqual(record.type, "normal", "normal completions are not abrupt");
  var t = util.getTypes();
  var abruptArgs = [t.stringLiteral(record.type)];
  if (record.type === "break" || record.type === "continue") {
    t.assertLiteral(record.target);
    abruptArgs[1] = this.insertedLocs.has(record.target) ? record.target : t.cloneDeep(record.target);
  } else if (record.type === "return" || record.type === "throw") {
    if (record.value) {
      t.assertExpression(record.value);
      abruptArgs[1] = this.insertedLocs.has(record.value) ? record.value : t.cloneDeep(record.value);
    }
  }
  this.emit(t.returnStatement(t.callExpression(this.contextProperty("abrupt"), abruptArgs)));
};
function isValidCompletion(record) {
  var type = record.type;
  if (type === "normal") {
    return !hasOwn.call(record, "target");
  }
  if (type === "break" || type === "continue") {
    return !hasOwn.call(record, "value") && util.getTypes().isLiteral(record.target);
  }
  if (type === "return" || type === "throw") {
    return hasOwn.call(record, "value") && !hasOwn.call(record, "target");
  }
  return false;
}

// Not all offsets into emitter.listing are potential jump targets. For
// example, execution typically falls into the beginning of a try block
// without jumping directly there. This method returns the current offset
// without marking it, so that a switch case will not necessarily be
// generated for this offset (I say "not necessarily" because the same
// location might end up being marked in the process of emitting other
// statements). There's no logical harm in marking such locations as jump
// targets, but minimizing the number of switch cases keeps the generated
// code shorter.
Ep.getUnmarkedCurrentLoc = function () {
  return util.getTypes().numericLiteral(this.listing.length);
};

// The context.prev property takes the value of context.next whenever we
// evaluate the switch statement discriminant, which is generally good
// enough for tracking the last location we jumped to, but sometimes
// context.prev needs to be more precise, such as when we fall
// successfully out of a try block and into a finally block without
// jumping. This method exists to update context.prev to the freshest
// available location. If we were implementing a full interpreter, we
// would know the location of the current instruction with complete
// precision at all times, but we don't have that luxury here, as it would
// be costly and verbose to set context.prev before every statement.
Ep.updateContextPrevLoc = function (loc) {
  var t = util.getTypes();
  if (loc) {
    t.assertLiteral(loc);
    if (loc.value === -1) {
      // If an uninitialized location literal was passed in, set its value
      // to the current this.listing.length.
      loc.value = this.listing.length;
    } else {
      // Otherwise assert that the location matches the current offset.
      _assert["default"].strictEqual(loc.value, this.listing.length);
    }
  } else {
    loc = this.getUnmarkedCurrentLoc();
  }

  // Make sure context.prev is up to date in case we fell into this try
  // statement without jumping to it. TODO Consider avoiding this
  // assignment when we know control must have jumped here.
  this.emitAssign(this.contextProperty("prev"), loc);
};

// In order to save the rest of explodeExpression from a combinatorial
// trainwreck of special cases, explodeViaTempVar is responsible for
// deciding when a subexpression needs to be "exploded," which is my
// very technical term for emitting the subexpression as an assignment
// to a temporary variable and the substituting the temporary variable
// for the original subexpression. Think of exploded view diagrams, not
// Michael Bay movies. The point of exploding subexpressions is to
// control the precise order in which the generated code realizes the
// side effects of those subexpressions.
Ep.explodeViaTempVar = function (tempVar, childPath, hasLeapingChildren, ignoreChildResult) {
  _assert["default"].ok(!ignoreChildResult || !tempVar, "Ignoring the result of a child expression but forcing it to " + "be assigned to a temporary variable?");
  var t = util.getTypes();
  var result = this.explodeExpression(childPath, ignoreChildResult);
  if (ignoreChildResult) {
    // Side effects already emitted above.
  } else if (tempVar || hasLeapingChildren && !t.isLiteral(result)) {
    // If tempVar was provided, then the result will always be assigned
    // to it, even if the result does not otherwise need to be assigned
    // to a temporary variable.  When no tempVar is provided, we have
    // the flexibility to decide whether a temporary variable is really
    // necessary.  Unfortunately, in general, a temporary variable is
    // required whenever any child contains a yield expression, since it
    // is difficult to prove (at all, let alone efficiently) whether
    // this result would evaluate to the same value before and after the
    // yield (see #206).  One narrow case where we can prove it doesn't
    // matter (and thus we do not need a temporary variable) is when the
    // result in question is a Literal value.
    result = this.emitAssign(tempVar || this.makeTempVar(), result);
  }
  return result;
};
Ep.explodeExpression = function (path, ignoreResult) {
  var t = util.getTypes();
  var expr = path.node;
  if (expr) {
    t.assertExpression(expr);
  } else {
    return expr;
  }
  var self = this;
  var result; // Used optionally by several cases below.
  var after;
  function finish(expr) {
    t.assertExpression(expr);
    if (ignoreResult) {
      self.emit(expr);
    }
    return expr;
  }

  // If the expression does not contain a leap, then we either emit the
  // expression as a standalone statement or return it whole.
  if (!meta.containsLeap(expr)) {
    return finish(expr);
  }

  // If any child contains a leap (such as a yield or labeled continue or
  // break statement), then any sibling subexpressions will almost
  // certainly have to be exploded in order to maintain the order of their
  // side effects relative to the leaping child(ren).
  var hasLeapingChildren = meta.containsLeap.onlyChildren(expr);

  // If ignoreResult is true, then we must take full responsibility for
  // emitting the expression with all its side effects, and we should not
  // return a result.

  switch (expr.type) {
    case "MemberExpression":
      return finish(t.memberExpression(self.explodeExpression(path.get("object")), expr.computed ? self.explodeViaTempVar(null, path.get("property"), hasLeapingChildren) : expr.property, expr.computed));
    case "CallExpression":
      var calleePath = path.get("callee");
      var argsPath = path.get("arguments");
      var newCallee;
      var newArgs;
      var hasLeapingArgs = argsPath.some(function (argPath) {
        return meta.containsLeap(argPath.node);
      });
      var injectFirstArg = null;
      if (t.isMemberExpression(calleePath.node)) {
        if (hasLeapingArgs) {
          // If the arguments of the CallExpression contained any yield
          // expressions, then we need to be sure to evaluate the callee
          // before evaluating the arguments, but if the callee was a member
          // expression, then we must be careful that the object of the
          // member expression still gets bound to `this` for the call.

          var newObject = self.explodeViaTempVar(
          // Assign the exploded callee.object expression to a temporary
          // variable so that we can use it twice without reevaluating it.
          self.makeTempVar(), calleePath.get("object"), hasLeapingChildren);
          var newProperty = calleePath.node.computed ? self.explodeViaTempVar(null, calleePath.get("property"), hasLeapingChildren) : calleePath.node.property;
          injectFirstArg = newObject;
          newCallee = t.memberExpression(t.memberExpression(t.cloneDeep(newObject), newProperty, calleePath.node.computed), t.identifier("call"), false);
        } else {
          newCallee = self.explodeExpression(calleePath);
        }
      } else {
        newCallee = self.explodeViaTempVar(null, calleePath, hasLeapingChildren);
        if (t.isMemberExpression(newCallee)) {
          // If the callee was not previously a MemberExpression, then the
          // CallExpression was "unqualified," meaning its `this` object
          // should be the global object. If the exploded expression has
          // become a MemberExpression (e.g. a context property, probably a
          // temporary variable), then we need to force it to be unqualified
          // by using the (0, object.property)(...) trick; otherwise, it
          // will receive the object of the MemberExpression as its `this`
          // object.
          newCallee = t.sequenceExpression([t.numericLiteral(0), t.cloneDeep(newCallee)]);
        }
      }
      if (hasLeapingArgs) {
        newArgs = argsPath.map(function (argPath) {
          return self.explodeViaTempVar(null, argPath, hasLeapingChildren);
        });
        if (injectFirstArg) newArgs.unshift(injectFirstArg);
        newArgs = newArgs.map(function (arg) {
          return t.cloneDeep(arg);
        });
      } else {
        newArgs = path.node.arguments;
      }
      return finish(t.callExpression(newCallee, newArgs));
    case "NewExpression":
      return finish(t.newExpression(self.explodeViaTempVar(null, path.get("callee"), hasLeapingChildren), path.get("arguments").map(function (argPath) {
        return self.explodeViaTempVar(null, argPath, hasLeapingChildren);
      })));
    case "ObjectExpression":
      return finish(t.objectExpression(path.get("properties").map(function (propPath) {
        if (propPath.isObjectProperty()) {
          return t.objectProperty(propPath.node.key, self.explodeViaTempVar(null, propPath.get("value"), hasLeapingChildren), propPath.node.computed);
        } else {
          return propPath.node;
        }
      })));
    case "ArrayExpression":
      return finish(t.arrayExpression(path.get("elements").map(function (elemPath) {
        if (!elemPath.node) {
          return null;
        }
        if (elemPath.isSpreadElement()) {
          return t.spreadElement(self.explodeViaTempVar(null, elemPath.get("argument"), hasLeapingChildren));
        } else {
          return self.explodeViaTempVar(null, elemPath, hasLeapingChildren);
        }
      })));
    case "SequenceExpression":
      var lastIndex = expr.expressions.length - 1;
      path.get("expressions").forEach(function (exprPath) {
        if (exprPath.key === lastIndex) {
          result = self.explodeExpression(exprPath, ignoreResult);
        } else {
          self.explodeExpression(exprPath, true);
        }
      });
      return result;
    case "LogicalExpression":
      after = this.loc();
      if (!ignoreResult) {
        result = self.makeTempVar();
      }
      var left = self.explodeViaTempVar(result, path.get("left"), hasLeapingChildren);
      if (expr.operator === "&&") {
        self.jumpIfNot(left, after);
      } else {
        _assert["default"].strictEqual(expr.operator, "||");
        self.jumpIf(left, after);
      }
      self.explodeViaTempVar(result, path.get("right"), hasLeapingChildren, ignoreResult);
      self.mark(after);
      return result;
    case "ConditionalExpression":
      var elseLoc = this.loc();
      after = this.loc();
      var test = self.explodeExpression(path.get("test"));
      self.jumpIfNot(test, elseLoc);
      if (!ignoreResult) {
        result = self.makeTempVar();
      }
      self.explodeViaTempVar(result, path.get("consequent"), hasLeapingChildren, ignoreResult);
      self.jump(after);
      self.mark(elseLoc);
      self.explodeViaTempVar(result, path.get("alternate"), hasLeapingChildren, ignoreResult);
      self.mark(after);
      return result;
    case "UnaryExpression":
      return finish(t.unaryExpression(expr.operator,
      // Can't (and don't need to) break up the syntax of the argument.
      // Think about delete a[b].
      self.explodeExpression(path.get("argument")), !!expr.prefix));
    case "BinaryExpression":
      return finish(t.binaryExpression(expr.operator, self.explodeViaTempVar(null, path.get("left"), hasLeapingChildren), self.explodeViaTempVar(null, path.get("right"), hasLeapingChildren)));
    case "AssignmentExpression":
      if (expr.operator === "=") {
        // If this is a simple assignment, the left hand side does not need
        // to be read before the right hand side is evaluated, so we can
        // avoid the more complicated logic below.
        return finish(t.assignmentExpression(expr.operator, self.explodeExpression(path.get("left")), self.explodeExpression(path.get("right"))));
      }
      var lhs = self.explodeExpression(path.get("left"));
      var temp = self.emitAssign(self.makeTempVar(), lhs);

      // For example,
      //
      //   x += yield y
      //
      // becomes
      //
      //   context.t0 = x
      //   x = context.t0 += yield y
      //
      // so that the left-hand side expression is read before the yield.
      // Fixes https://github.com/facebook/regenerator/issues/345.

      return finish(t.assignmentExpression("=", t.cloneDeep(lhs), t.assignmentExpression(expr.operator, t.cloneDeep(temp), self.explodeExpression(path.get("right")))));
    case "UpdateExpression":
      return finish(t.updateExpression(expr.operator, self.explodeExpression(path.get("argument")), expr.prefix));
    case "YieldExpression":
      after = this.loc();
      var arg = expr.argument && self.explodeExpression(path.get("argument"));
      if (arg && expr.delegate) {
        var _result = self.makeTempVar();
        var _ret = t.returnStatement(t.callExpression(self.contextProperty("delegateYield"), [arg, t.stringLiteral(_result.property.name), after]));
        _ret.loc = expr.loc;
        self.emit(_ret);
        self.mark(after);
        return _result;
      }
      self.emitAssign(self.contextProperty("next"), after);
      var ret = t.returnStatement(t.cloneDeep(arg) || null);
      // Preserve the `yield` location so that source mappings for the statements
      // link back to the yield properly.
      ret.loc = expr.loc;
      self.emit(ret);
      self.mark(after);
      return self.contextProperty("sent");
    case "ClassExpression":
      return finish(self.explodeClass(path));
    default:
      throw new Error("unknown Expression of type " + JSON.stringify(expr.type));
  }
};
Ep.explodeClass = function (path) {
  var explodingChildren = [];
  if (path.node.superClass) {
    explodingChildren.push(path.get("superClass"));
  }
  path.get("body.body").forEach(function (member) {
    if (member.node.computed) {
      explodingChildren.push(member.get("key"));
    }
  });
  var hasLeapingChildren = explodingChildren.some(function (child) {
    return meta.containsLeap(child);
  });
  for (var i = 0; i < explodingChildren.length; i++) {
    var child = explodingChildren[i];
    var isLast = i === explodingChildren.length - 1;
    if (isLast) {
      child.replaceWith(this.explodeExpression(child));
    } else {
      child.replaceWith(this.explodeViaTempVar(null, child, hasLeapingChildren));
    }
  }
  return path.node;
};