prime.js
8.57 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/**
* Prime number generation API.
*
* @author Dave Longley
*
* Copyright (c) 2014 Digital Bazaar, Inc.
*/
var forge = require('./forge');
require('./util');
require('./jsbn');
require('./random');
(function() {
// forge.prime already defined
if(forge.prime) {
module.exports = forge.prime;
return;
}
/* PRIME API */
var prime = module.exports = forge.prime = forge.prime || {};
var BigInteger = forge.jsbn.BigInteger;
// primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
var THIRTY = new BigInteger(null);
THIRTY.fromInt(30);
var op_or = function(x, y) {return x|y;};
/**
* Generates a random probable prime with the given number of bits.
*
* Alternative algorithms can be specified by name as a string or as an
* object with custom options like so:
*
* {
* name: 'PRIMEINC',
* options: {
* maxBlockTime: <the maximum amount of time to block the main
* thread before allowing I/O other JS to run>,
* millerRabinTests: <the number of miller-rabin tests to run>,
* workerScript: <the worker script URL>,
* workers: <the number of web workers (if supported) to use,
* -1 to use estimated cores minus one>.
* workLoad: the size of the work load, ie: number of possible prime
* numbers for each web worker to check per work assignment,
* (default: 100).
* }
* }
*
* @param bits the number of bits for the prime number.
* @param options the options to use.
* [algorithm] the algorithm to use (default: 'PRIMEINC').
* [prng] a custom crypto-secure pseudo-random number generator to use,
* that must define "getBytesSync".
*
* @return callback(err, num) called once the operation completes.
*/
prime.generateProbablePrime = function(bits, options, callback) {
if(typeof options === 'function') {
callback = options;
options = {};
}
options = options || {};
// default to PRIMEINC algorithm
var algorithm = options.algorithm || 'PRIMEINC';
if(typeof algorithm === 'string') {
algorithm = {name: algorithm};
}
algorithm.options = algorithm.options || {};
// create prng with api that matches BigInteger secure random
var prng = options.prng || forge.random;
var rng = {
// x is an array to fill with bytes
nextBytes: function(x) {
var b = prng.getBytesSync(x.length);
for(var i = 0; i < x.length; ++i) {
x[i] = b.charCodeAt(i);
}
}
};
if(algorithm.name === 'PRIMEINC') {
return primeincFindPrime(bits, rng, algorithm.options, callback);
}
throw new Error('Invalid prime generation algorithm: ' + algorithm.name);
};
function primeincFindPrime(bits, rng, options, callback) {
if('workers' in options) {
return primeincFindPrimeWithWorkers(bits, rng, options, callback);
}
return primeincFindPrimeWithoutWorkers(bits, rng, options, callback);
}
function primeincFindPrimeWithoutWorkers(bits, rng, options, callback) {
// initialize random number
var num = generateRandom(bits, rng);
/* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The
number we are given is always aligned at 30k + 1. Each time the number is
determined not to be prime we add to get to the next 'i', eg: if the number
was at 30k + 1 we add 6. */
var deltaIdx = 0;
// get required number of MR tests
var mrTests = getMillerRabinTests(num.bitLength());
if('millerRabinTests' in options) {
mrTests = options.millerRabinTests;
}
// find prime nearest to 'num' for maxBlockTime ms
// 10 ms gives 5ms of leeway for other calculations before dropping
// below 60fps (1000/60 == 16.67), but in reality, the number will
// likely be higher due to an 'atomic' big int modPow
var maxBlockTime = 10;
if('maxBlockTime' in options) {
maxBlockTime = options.maxBlockTime;
}
_primeinc(num, bits, rng, deltaIdx, mrTests, maxBlockTime, callback);
}
function _primeinc(num, bits, rng, deltaIdx, mrTests, maxBlockTime, callback) {
var start = +new Date();
do {
// overflow, regenerate random number
if(num.bitLength() > bits) {
num = generateRandom(bits, rng);
}
// do primality test
if(num.isProbablePrime(mrTests)) {
return callback(null, num);
}
// get next potential prime
num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
} while(maxBlockTime < 0 || (+new Date() - start < maxBlockTime));
// keep trying later
forge.util.setImmediate(function() {
_primeinc(num, bits, rng, deltaIdx, mrTests, maxBlockTime, callback);
});
}
// NOTE: This algorithm is indeterminate in nature because workers
// run in parallel looking at different segments of numbers. Even if this
// algorithm is run twice with the same input from a predictable RNG, it
// may produce different outputs.
function primeincFindPrimeWithWorkers(bits, rng, options, callback) {
// web workers unavailable
if(typeof Worker === 'undefined') {
return primeincFindPrimeWithoutWorkers(bits, rng, options, callback);
}
// initialize random number
var num = generateRandom(bits, rng);
// use web workers to generate keys
var numWorkers = options.workers;
var workLoad = options.workLoad || 100;
var range = workLoad * 30 / 8;
var workerScript = options.workerScript || 'forge/prime.worker.js';
if(numWorkers === -1) {
return forge.util.estimateCores(function(err, cores) {
if(err) {
// default to 2
cores = 2;
}
numWorkers = cores - 1;
generate();
});
}
generate();
function generate() {
// require at least 1 worker
numWorkers = Math.max(1, numWorkers);
// TODO: consider optimizing by starting workers outside getPrime() ...
// note that in order to clean up they will have to be made internally
// asynchronous which may actually be slower
// start workers immediately
var workers = [];
for(var i = 0; i < numWorkers; ++i) {
// FIXME: fix path or use blob URLs
workers[i] = new Worker(workerScript);
}
var running = numWorkers;
// listen for requests from workers and assign ranges to find prime
for(var i = 0; i < numWorkers; ++i) {
workers[i].addEventListener('message', workerMessage);
}
/* Note: The distribution of random numbers is unknown. Therefore, each
web worker is continuously allocated a range of numbers to check for a
random number until one is found.
Every 30 numbers will be checked just 8 times, because prime numbers
have the form:
30k+i, for i < 30 and gcd(30, i)=1 (there are 8 values of i for this)
Therefore, if we want a web worker to run N checks before asking for
a new range of numbers, each range must contain N*30/8 numbers.
For 100 checks (workLoad), this is a range of 375. */
var found = false;
function workerMessage(e) {
// ignore message, prime already found
if(found) {
return;
}
--running;
var data = e.data;
if(data.found) {
// terminate all workers
for(var i = 0; i < workers.length; ++i) {
workers[i].terminate();
}
found = true;
return callback(null, new BigInteger(data.prime, 16));
}
// overflow, regenerate random number
if(num.bitLength() > bits) {
num = generateRandom(bits, rng);
}
// assign new range to check
var hex = num.toString(16);
// start prime search
e.target.postMessage({
hex: hex,
workLoad: workLoad
});
num.dAddOffset(range, 0);
}
}
}
/**
* Generates a random number using the given number of bits and RNG.
*
* @param bits the number of bits for the number.
* @param rng the random number generator to use.
*
* @return the random number.
*/
function generateRandom(bits, rng) {
var num = new BigInteger(bits, rng);
// force MSB set
var bits1 = bits - 1;
if(!num.testBit(bits1)) {
num.bitwiseTo(BigInteger.ONE.shiftLeft(bits1), op_or, num);
}
// align number on 30k+1 boundary
num.dAddOffset(31 - num.mod(THIRTY).byteValue(), 0);
return num;
}
/**
* Returns the required number of Miller-Rabin tests to generate a
* prime with an error probability of (1/2)^80.
*
* See Handbook of Applied Cryptography Chapter 4, Table 4.4.
*
* @param bits the bit size.
*
* @return the required number of iterations.
*/
function getMillerRabinTests(bits) {
if(bits <= 100) return 27;
if(bits <= 150) return 18;
if(bits <= 200) return 15;
if(bits <= 250) return 12;
if(bits <= 300) return 9;
if(bits <= 350) return 8;
if(bits <= 400) return 7;
if(bits <= 500) return 6;
if(bits <= 600) return 5;
if(bits <= 800) return 4;
if(bits <= 1250) return 3;
return 2;
}
})();