Toggle navigation
Toggle navigation
This project
Loading...
Sign in
양지수
/
HCG_Project1
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
양지수
2021-05-25 01:46:29 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
c49dcf68b1e8e49c2d6024320c5245ba2162c9d1
c49dcf68
1 parent
e8762371
KNU for kospi
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
189 additions
and
0 deletions
knu/KnuSentiLex/kospiCompare.py
knu/KnuSentiLex/kospiCompare.py
0 → 100644
View file @
c49dcf6
# -*-coding:utf-8-*-
import
collections
import
json
import
warnings
warnings
.
simplefilter
((
"ignore"
))
import
openpyxl
import
pandas
as
pd
import
re
from
datetime
import
datetime
########코스피 감성 판단
class
KnuSL
():
def
data_list
(
wordname
):
with
open
(
'KnuSentiLex/data/SentiWord_info.json'
,
encoding
=
'utf-8-sig'
,
mode
=
'r'
)
as
f
:
data
=
json
.
load
(
f
)
result
=
[
0
,
0
]
for
i
in
range
(
0
,
len
(
data
)):
if
data
[
i
][
'word'
]
==
wordname
:
result
.
pop
()
result
.
pop
()
result
.
append
(
data
[
i
][
'word_root'
])
result
.
append
(
int
(
data
[
i
][
'polarity'
]))
r_word
=
result
[
0
]
# 어근
s_word
=
result
[
1
]
# 극성
return
s_word
if
__name__
==
"__main__"
:
ksl
=
KnuSL
print
(
"
\n
KNU 한국어 감성사전입니다~ :)"
)
print
(
"사전에 단어가 없는 경우 결과가 None으로 나타납니다!!!"
)
print
(
"종료하시려면 #을 입력해주세요!!!"
)
print
(
"-2:매우 부정, -1:부정, 0:중립 or Unkwon, 1:긍정, 2:매우 긍정"
)
print
(
"
\n
"
)
#########
Newsfilefolder
=
input
(
"종목폴더입력: "
)
Newsfilename
=
input
(
"파일이름입력:"
)
Newsfilepos
=
"C:/Users/yangj/PycharmProjects/pythonProject1/뉴스키워드/"
+
Newsfilefolder
+
"/"
+
Newsfilename
+
".xlsx"
Newsfile
=
openpyxl
.
load_workbook
(
Newsfilepos
)
# 파일이름입력
ws
=
Newsfile
.
active
data
=
[]
date
=
[]
i
=
0
for
row
in
ws
.
rows
:
data
.
append
([])
date
.
append
(
row
[
1
]
.
value
)
for
cell
in
row
:
if
cell
.
value
!=
None
:
data
[
i
]
.
append
(
cell
.
value
)
i
+=
1
del
data
[
0
]
# 첫번째 의미없는 열 삭제
del
date
[
0
]
for
i
in
range
(
len
(
data
)):
del
data
[
i
][
0
]
# 각 열의 첫번째 행 삭제
for
i
in
range
(
len
(
data
)):
del
data
[
i
][
0
]
# 각 열의 날짜 행 삭제
KNUdata
=
[]
Tdata
=
[]
for
x
in
range
(
len
(
data
)):
KNUdata
.
append
([])
Tdata
.
append
([])
for
y
in
range
(
len
(
data
[
x
])):
KNUdata
[
x
]
.
append
(
ksl
.
data_list
(
data
[
x
][
y
]))
Tdata
[
x
]
.
append
([
data
[
x
][
y
],
KNUdata
[
x
][
y
]])
result
=
{
'날짜'
:
date
,
'단어, 극성'
:
Tdata
}
df
=
pd
.
DataFrame
(
result
)
list_df
=
df
.
values
.
tolist
()
# dataframe list로 변경
new_date
=
[]
# 날짜 중복 삭제
for
v
in
date
:
if
v
not
in
new_date
:
new_date
.
append
(
v
)
# print(new_date)
Setlist
=
[]
# 날짜별 키워드 넣기
for
v
in
range
(
len
(
new_date
)):
Setlist
.
append
([])
Setlist
[
v
]
.
append
(
new_date
[
v
])
for
i
in
range
(
len
(
list_df
)):
for
j
in
range
(
len
(
list_df
[
i
][
1
])):
if
new_date
[
v
]
==
list_df
[
i
][
0
]:
Setlist
[
v
]
.
append
(
list_df
[
i
][
1
][
j
])
Stockfilefolder
=
input
(
"종목시세폴더입력: "
)
Stockfilename
=
input
(
"시세파일이름입력:"
)
fileStock
=
"C:/Users/yangj/PycharmProjects/pythonProject1/종목별시세/"
+
Stockfilefolder
+
"/"
+
Stockfilename
+
".xlsx"
Stockfile
=
openpyxl
.
load_workbook
(
fileStock
)
# 파일이름입력
stock_ws
=
Stockfile
.
active
Stock_data
=
[]
# list 타입
i
=
0
for
row
in
stock_ws
.
rows
:
Stock_data
.
append
([])
for
cell
in
row
:
if
cell
.
value
!=
None
:
Stock_data
[
i
]
.
append
(
cell
.
value
)
i
+=
1
del
Stock_data
[
0
]
for
i
in
range
(
len
(
Stock_data
)):
del
Stock_data
[
i
][
2
]
# 대비 삭제
for
i
in
range
(
len
(
Stock_data
)):
del
Stock_data
[
i
][
7
]
# 거래대금 삭제
for
i
in
range
(
len
(
Stock_data
)):
del
Stock_data
[
i
][
7
]
# 시가 총액 삭제
i
=
0
for
k
in
range
(
len
(
Setlist
)):
if
(
Stock_data
[
i
][
0
]
.
split
(
'/'
)
==
Setlist
[
k
][
0
]
.
split
(
'.'
)[:
3
]):
# 날짜 비교 날짜가 같다면
if
Stock_data
[
i
][
2
]
>
0
:
# 코스피 등락이 양수
for
j
in
range
(
1
,
len
(
Setlist
[
k
])):
if
Setlist
[
k
][
j
][
1
]
==
0
:
Setlist
[
k
][
j
][
1
]
=
1
else
:
Setlist
[
k
][
j
][
1
]
+=
1
elif
Stock_data
[
i
][
2
]
<
0
:
for
j
in
range
(
1
,
len
(
Setlist
[
k
])):
# 음수면 어제 뉴스는 악재 취급
if
Setlist
[
k
][
j
][
1
]
==
0
:
Setlist
[
k
][
j
][
1
]
=
-
1
else
:
Setlist
[
k
][
j
][
1
]
-=
1
i
+=
1
else
:
if
Stock_data
[
i
+
1
][
2
]
>
0
:
# 다음날 주가 등락률이 양수면
for
j
in
range
(
1
,
len
(
Setlist
[
k
])):
# 어제뉴스는 호재 취급
if
Setlist
[
k
][
j
][
1
]
==
0
:
Setlist
[
k
][
j
][
1
]
=
1
else
:
Setlist
[
k
][
j
][
1
]
+=
1
elif
Stock_data
[
i
+
1
][
2
]
<
0
:
for
j
in
range
(
1
,
len
(
Setlist
[
k
])):
# 음수면 어제 뉴스는 악재 취급
if
Setlist
[
k
][
j
][
1
]
==
0
:
Setlist
[
k
][
j
][
1
]
=
-
1
else
:
Setlist
[
k
][
j
][
1
]
-=
1
Setlist_w
=
[]
for
i
in
range
(
len
(
Setlist
)):
Setlist_w
.
append
([])
for
j
in
range
(
1
,
len
(
Setlist
[
i
])):
Setlist_w
[
i
]
.
append
(
Setlist
[
i
][
j
][
0
])
# 극성 제외 단어만 추출
counter
=
{}
for
i
in
range
(
len
(
Setlist_w
)):
counter
[
i
]
=
collections
.
Counter
(
Setlist_w
[
i
])
# 누적치
for
i
in
range
(
len
(
Setlist_w
)):
Setlist_w
[
i
]
=
list
(
zip
(
counter
[
i
]
.
keys
(),
counter
[
i
]
.
values
()))
# 튜플 리스트화 [(값, 값)]
Plist
=
[]
for
i
in
range
(
len
(
Setlist_w
)):
Plist
.
append
([])
for
j
in
range
(
len
(
Setlist_w
[
i
])):
Plist
[
i
]
.
append
(
list
(
Setlist_w
[
i
][
j
]))
# 튜플 -> 리스트화 [[값, 값]]
for
i
in
range
(
len
(
Plist
)):
for
j
in
range
(
len
(
Plist
[
i
])):
Plist
[
i
][
j
][
1
]
=
0
# 극성 0으로 초기화
for
i
in
range
(
len
(
Setlist
)):
for
j
in
range
(
1
,
len
(
Setlist
[
i
])):
for
h
in
range
(
len
(
Plist
[
i
])):
if
Setlist
[
i
][
j
][
0
]
==
Plist
[
i
][
h
][
0
]:
Plist
[
i
][
h
][
1
]
+=
Setlist
[
i
][
j
][
1
]
# 누적치
vert_p
=
[]
# 수직 중복 삭제
for
i
in
range
(
len
(
Plist
)):
for
j
in
range
(
len
(
Plist
[
i
])):
vert_p
.
append
(
Plist
[
i
][
j
])
# 단어만 넣기
# print(vert_p)
vert_p
.
sort
(
key
=
lambda
x
:
x
[
0
])
# 단어 기준으로 정렬
for
i
in
range
(
len
(
vert_p
)
-
2
):
# 단어 비교해서 같으면 누적 다르면 값 바꾸기
for
j
in
range
(
i
+
1
,
len
(
vert_p
)):
if
vert_p
[
i
][
0
]
==
vert_p
[
j
][
0
]:
vert_p
[
i
][
1
]
+=
vert_p
[
j
][
1
]
vert_p
[
j
]
=
[
'0'
,
0
]
vert_p
=
[
i
for
i
in
vert_p
if
not
'0'
in
i
]
# '0'들어간 열 제거
df_ver
=
pd
.
DataFrame
(
vert_p
)
df_ver
.
to_excel
(
Stockfilename
+
' KNU_New_vdic2.xlsx'
,
sheet_name
=
'sheet1'
)
Please
register
or
login
to post a comment