노현욱

feat : things

1 +import pyaudio
2 +import numpy as np
3 +
4 +# Define constants
5 +CHUNK_SIZE = 1024 # Number of audio frames per buffer
6 +FORMAT = pyaudio.paInt16 # Audio format (16-bit int)
7 +CHANNELS = 1 # Mono audio
8 +RATE = 44100 # Sample rate (Hz)
9 +RMS_REF = 1.0 # Reference RMS amplitude for dB calculation
10 +
11 +# Initialize PyAudio stream
12 +audio = pyaudio.PyAudio()
13 +stream = audio.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK_SIZE)
14 +
15 +# Main loop
16 +while True:
17 + # Read audio data from stream
18 + data = stream.read(CHUNK_SIZE)
19 +
20 + # Convert audio data to numpy array
21 + audio_array = np.frombuffer(data, dtype=np.int16)
22 +
23 + # Calculate RMS amplitude
24 + rms = np.sqrt(np.mean(np.square(audio_array)))
25 +
26 + # Calculate dB level
27 + avg_db = 20 * np.log10(rms / RMS_REF)
28 + max_db = 20 * np.log10(np.max(audio_array) / RMS_REF)
29 +
30 + # Print dB level to console
31 + try:
32 + if(avg_db != np.NaN and max_db != np.NaN and max_db > 50):
33 + print("dB level:", int(avg_db), int(max_db))
34 + except:
35 + continue
...\ No newline at end of file ...\ No newline at end of file
1 -"""PyAudio Example: Audio wire between input and output. Callback version."""
2 -
3 -import time
4 -import sys
5 -import pyaudio
6 -import numpy as np
7 -
8 -
9 -DURATION = 5 # seconds
10 -
11 -delay_buffer = np.zeros((44100, 2), dtype=np.float32)
12 -
13 -def callback(in_data, frame_count, time_info, status):
14 - global delay_buffer
15 - audio_data = np.frombuffer(in_data, dtype=np.float32).reshape(frame_count, 2)
16 - delayed_data = np.concatenate((delay_buffer, audio_data))
17 - delay_buffer = delayed_data[frame_count:]
18 - return (audio_data + 0.5 * delay_buffer).tobytes(), pyaudio.paContinue
19 -
20 -p = pyaudio.PyAudio()
21 -stream = p.open(format=p.get_format_from_width(2),
22 - channels=1,
23 - rate=44100,
24 - input=True,
25 - output=True,
26 - frames_per_buffer=1024,
27 -
28 - stream_callback=callback)
29 -
30 -start = time.time()
31 -while stream.is_active() and (time.time() - start) < DURATION:
32 - time.sleep(0.1)
33 -
34 -stream.close()
35 -p.terminate()
...\ No newline at end of file ...\ No newline at end of file
1 +import pyaudio
2 +import numpy as np
3 +import scipy.signal as signal
4 +import matplotlib.pyplot as plt
5 +# 파라미터 설정
6 +RATE = 44100 # 샘플링 주파수
7 +CHUNK = 1024 # 읽을 샘플의 수
8 +THRESHOLD = 256 # 피크를 검출하기 위한 threshold 값
9 +WIN_SIZE = 1024 # STFT를 적용할 윈도우 사이즈
10 +HOP_SIZE = 512 # STFT에서 윈도우 사이의 거리 (오버랩 사이즈)
11 +
12 +# PyAudio 객체 생성
13 +p = pyaudio.PyAudio()
14 +
15 +# 콜백 함수 정의
16 +def process_audio(in_data, frame_count, time_info, status):
17 + # 오디오 데이터 변환
18 + data = np.frombuffer(in_data, dtype=np.int16)
19 +
20 + # STFT 수행
21 + f, t, Zxx = signal.stft(data, RATE, nperseg=WIN_SIZE, noverlap=HOP_SIZE)
22 +
23 + # 피크 검출
24 + peaks, _ = signal.find_peaks(np.abs(np.mean(Zxx, axis=1)), height=THRESHOLD, distance=WIN_SIZE)
25 + # 파라미터 추정
26 + if len(peaks) > 0:
27 + peak_idx = peaks[0] # 첫 번째 피크 선택
28 + height = np.abs(Zxx[peak_idx, 0]) # 피크의 높이 추정
29 + freq = f[peak_idx] # 피크의 주파수 추정
30 + amp = np.max(np.abs(data)) # 신호의 진폭 추정
31 + progress = (peak_idx + HOP_SIZE) / RATE # 충돌음의 진행 길이 추정
32 +
33 + # 결과 출력
34 + print("Height: {:.2f}, Frequency: {:.2f}, Amplitude: {:.2f}, Progress: {:.2f}".format(height, freq, amp, progress))
35 +
36 + # 반환할 데이터 없음
37 + return (in_data, pyaudio.paContinue)
38 +
39 +# 입력 스트림 열기
40 +stream = p.open(format=p.get_format_from_width(2),
41 + channels=1,
42 + rate=RATE,
43 + input=True,
44 + output=True,
45 + frames_per_buffer=CHUNK,
46 + stream_callback=process_audio
47 + )
48 +
49 +# 스트림 시작
50 +stream.start_stream()
51 +
52 +# 프로그램 실행 중지 전까지 무한 대기
53 +while stream.is_active():
54 + pass
55 +
56 +# 스트림과 PyAudio 객체 종료
57 +stream.stop_stream()
58 +stream.close()
59 +p.terminate()
1 +
2 +
3 +
4 +import sys
5 +import numpy as np
6 +import pyaudio
7 +
8 +RECORD_SECONDS = 5
9 +CHUNK = 128
10 +RATE = 44100
11 +DELAY = 0.1 # Delay time in seconds
12 +GAIN = 1 # Echo gain (0 to 1)
13 +
14 +# Create buffer for delayed audio data
15 +buffer_size = int(RATE * DELAY)
16 +buffer = np.zeros(buffer_size, dtype=np.int16)
17 +
18 +def add_echo(in_data, frame_count, time_info, status_flags):
19 + global buffer
20 + data = np.frombuffer(in_data, dtype=np.int16)
21 + output = data + GAIN * buffer[:len(data)]
22 + buffer = np.roll(buffer, len(data))
23 + buffer[-len(data):] = data
24 + return (output.astype(np.int16).tobytes(), pyaudio.paContinue)
25 +
26 +
27 +p = pyaudio.PyAudio()
28 +stream = p.open(format=p.get_format_from_width(2),
29 + channels=1 if sys.platform == 'darwin' else 2,
30 + rate=RATE,
31 + input=True,
32 + output=True,
33 + frames_per_buffer=CHUNK,
34 + stream_callback=add_echo
35 + )
36 +
37 +print('* recording')
38 +
39 +stream.start_stream()
40 +
41 +while stream.is_active():
42 + # Do other processing here if necessary
43 + pass
44 +
45 +stream.stop_stream()
46 +stream.close()
47 +p.terminate()
No preview for this file type
1 +import base64
2 +
3 +task_list = []
4 +
5 +
6 +def display_menu():
7 + print("일정 관리자")
8 + print("1. 일정 추가")
9 + print("2. 일정 보기")
10 + print("3. 일정 완료 표시")
11 + print("4. 종료")
12 +
13 +
14 +def add_task():
15 + title = input("일정 제목 입력: ")
16 + description = input("일정 설명 입력: ")
17 + status = "하는 중"
18 + task = { "title": title, "description": description, "status": status}
19 + task_list.append(task)
20 + print("일정이 추가되었습니다.")
21 +
22 +
23 +def view_tasks():
24 + if not task_list:
25 + print("일정 목록이 비어 있습니다.")
26 + else:
27 + print()
28 + print("일정 목록:")
29 + print("----------------")
30 + for task in task_list:
31 + print(f"제목: {task['title']}")
32 + print(f"설명: {task['description']}")
33 + print(f"상태: {task['status']}")
34 + print("----------------")
35 +
36 +
37 +def mark_task_complete():
38 + if not task_list:
39 + print("일정 목록이 비어 있습니다.")
40 + return
41 +
42 + title = input("완료로 표시할 일정의 제목 입력: ")
43 + for task in task_list:
44 + if task['title'] == title:
45 + task['status'] = "완료"
46 + print("일정이 완료로 표시되었습니다.")
47 + return
48 +
49 + print("식별자와 일치하는 일정을 찾을 수 없습니다.")
50 +
51 +
52 +while True:
53 + display_menu()
54 + choice = input("선택: ")
55 +
56 + if choice == "1":
57 + add_task()
58 + elif choice == "2":
59 + view_tasks()
60 + elif choice == "3":
61 + mark_task_complete()
62 + elif choice == "4":
63 + print("프로그램을 종료합니다.")
64 + break
65 + else:
66 + print("올바른 선택지를 입력하세요.")
67 + print()
68 +
1 -import pyaudio
2 -from pydub import AudioSegment
3 -from pydub.effects import normalize
4 -
5 -# set up PyAudio
6 -pa = pyaudio.PyAudio()
7 -stream = pa.open(format=pyaudio.paInt16,
8 - channels=1,
9 - rate=44100,
10 - input=True,
11 - frames_per_buffer=1024)
12 -
13 -# record some audio from the microphone
14 -audio_data = []
15 -for i in range(0, int(44100 / 1024 * 5)):
16 - data = stream.read(1024)
17 - audio_data.append(data)
18 -
19 -# convert the audio data to a PyDub audio segment
20 -audio_segment = AudioSegment(
21 - data=b''.join(audio_data),
22 - sample_width=2,
23 - frame_rate=44100,
24 - channels=1
25 -)
26 -
27 -# apply an echo effect to the audio segment
28 -echoed_segment = normalize(audio_segment)
29 -
30 -# save the output audio file
31 -echoed_segment.export("output.mp3", format="mp3")
32 -
33 -# clean up
34 -stream.stop_stream()
35 -stream.close()
36 -pa.terminate()
1 +import sys
2 +import numpy as np
3 +import pyaudio
4 +import librosa
5 +
6 +RECORD_SECONDS = 5
7 +CHUNK = 1024
8 +RATE = 44100
9 +DELAY = 0.1 # Delay time in seconds
10 +GAIN = 1 # Echo gain (0 to 1)
11 +MAX_FREQ = 3000
12 +
13 +# Create buffer for delayed audio data
14 +buffer_size = int(RATE * DELAY)
15 +buffer = np.zeros(buffer_size, dtype=np.int16)
16 +
17 +def add_echo(in_data, frame_count, time_info, status_flags):
18 + global buffer
19 + data = np.frombuffer(in_data, dtype=np.int16)
20 +
21 + def get_max_average_db(data):
22 + data_float = data.astype(np.float32)
23 +
24 + # Compute the power spectrogram of the data
25 + S = librosa.stft(data_float, n_fft=2048, hop_length=512)
26 + S_power = np.abs(S)**2
27 +
28 + # Convert power spectrogram to dB scale
29 + S_dB = librosa.amplitude_to_db(S_power, ref=np.max)
30 +
31 + # Calculate the average dB level
32 + avg_dB = np.mean(S_dB)
33 + max_dB = np.max(S_dB)
34 +
35 + return avg_dB, max_dB
36 +
37 + def get_dominant_freq(data):
38 + data = data.astype(np.float32) / 32768.0
39 +
40 + # Compute the Fourier transform of the data
41 + fft_data = np.fft.fft(data)
42 +
43 + # Compute the power spectral density of the data
44 + psd_data = np.abs(fft_data)**2
45 +
46 + # Define the frequency range of interest
47 + freqs = np.fft.fftfreq(len(psd_data), d=1/RATE)
48 +
49 + # Compute the power spectrogram on the mel scale
50 + S = librosa.feature.melspectrogram(y=data, sr=RATE, n_fft=2048, hop_length=1024)
51 +
52 + # Find the frequency bin with the maximum energy in each frame
53 + max_bin = np.argmax(S, axis=0)
54 +
55 + # Find the dominant frequency in each frame
56 + dominant_freqs = freqs[max_bin]
57 +
58 + # Compute the median of the dominant frequencies to get the overall dominant frequency
59 + dominant_freq = np.median(dominant_freqs)
60 +
61 + return dominant_freq
62 +
63 + freq = get_dominant_freq(data)
64 + avg_db, max_db = get_max_average_db(data)
65 + print(int(freq), int(avg_db), int(max_db))
66 + temp_gain = freq/MAX_FREQ
67 + output = data + freq/2500 * buffer[:len(data)]
68 + buffer = np.roll(buffer, len(data))
69 + buffer[-len(data):] = data
70 + return (output.astype(np.int16).tostring(), pyaudio.paContinue)
71 +
72 +
73 +p = pyaudio.PyAudio()
74 +stream = p.open(format=p.get_format_from_width(2),
75 + channels=1 if sys.platform == 'darwin' else 2,
76 + rate=RATE,
77 + input=True,
78 + output=True,
79 + frames_per_buffer=CHUNK,
80 + stream_callback=add_echo
81 + )
82 +
83 +print('* recording')
84 +
85 +stream.start_stream()
86 +
87 +while stream.is_active():
88 + # Do other processing here if necessary
89 + pass
90 +
91 +stream.stop_stream()
92 +stream.close()
93 +p.terminate()
1 -import numpy as np
2 -import pyaudio
3 -import time
4 -
5 -pa = pyaudio.PyAudio()
6 -delay_buffer = np.zeros((44100, 1), dtype=np.float32)
7 -
8 -def callback(in_data, frame_count, time_info, status):
9 - global delay_buffer
10 - audio_data = np.frombuffer(in_data, dtype=np.float32).reshape(1024, 1)
11 - delayed_data = np.concatenate((delay_buffer, audio_data))
12 - delay_buffer = delayed_data[frame_count:]
13 - return (audio_data + 0.5 * delay_buffer).tobytes(), pyaudio.paContinue
14 -
15 -stream = pa.open(format=pyaudio.paFloat32,
16 - channels=1,
17 - rate=1024,
18 - input=True,
19 - output=True,
20 - frames_per_buffer=44100,
21 - stream_callback=callback)
22 -start = time.time()
23 -DURATION = 30
24 -# keep the stream running for a few seconds
25 -while stream.is_active() and (time.time() - start) < DURATION:
26 - time.sleep(0.1)
27 -
28 -stream.stop()
29 -stream.close()
30 -pa.terminate()
...\ No newline at end of file ...\ No newline at end of file
1 +import pyaudio
2 +import numpy as np
3 +import matplotlib.pyplot as plt
4 +import librosa
5 +import threading
6 +import sys
7 +
8 +print = sys.stdout.write
9 +
10 +
11 +# Define constants for audio parameters
12 +FORMAT = pyaudio.paFloat32
13 +CHANNELS = 1
14 +RATE = 44100
15 +FRAMES_PER_BUFFER = 1024
16 +DELAY = 0.1
17 +GAIN = 0.5
18 +
19 +# Open an audio stream
20 +stream = pyaudio.PyAudio().open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=FRAMES_PER_BUFFER)
21 +
22 +
23 +sound = []
24 +def get_stream_data():
25 + global sound
26 + sound.append(stream.read(FRAMES_PER_BUFFER*5, False))
27 +
28 +get_stream_data()
29 +
30 +
31 +# Create buffer for delayed audio data
32 +buffer_size = int(RATE * DELAY)
33 +buffer = np.zeros(buffer_size, dtype=np.int16)
34 +
35 +def add_echo(in_data, frame_count, time_info, status_flags):
36 + global buffer
37 + data = np.frombuffer(in_data, dtype=np.int16)
38 + output = data + GAIN * buffer[:len(data)]
39 + buffer = np.roll(buffer, len(data))
40 + buffer[-len(data):] = data
41 + return (output.astype(np.int16).tostring(), pyaudio.paContinue)
42 +
43 +
44 +
45 +def get_max_average_db():
46 + global sound
47 + data = sound[-1]
48 + # Convert data to numpy array
49 + data_float = np.frombuffer(data, dtype=np.float32)
50 +
51 + # Compute the power spectrogram of the data
52 + S = librosa.stft(data_float, n_fft=2048, hop_length=512)
53 + S_power = np.abs(S)**2
54 +
55 + # Convert power spectrogram to dB scale
56 + S_dB = librosa.amplitude_to_db(S_power, ref=np.max)
57 +
58 + # Calculate the average dB level
59 + avg_dB = np.mean(S_dB)
60 +
61 + print("Average dB: {:.2f}".format(avg_dB) + " "+ "Max dB: {:.2f}".format(np.max(S_dB)) + "\n")
62 +
63 +
64 +def print_dominant_freq():
65 + global sound
66 + data = sound[-1]
67 +
68 + # Convert data to numpy array
69 + data = np.frombuffer(data, dtype=np.float32)
70 +
71 + # Compute the Fourier transform of the data
72 + fft_data = np.fft.fft(data)
73 +
74 + # Compute the power spectral density of the data
75 + psd_data = np.abs(fft_data)**2
76 +
77 + # Define the frequency range of interest
78 + freqs = np.fft.fftfreq(len(psd_data), d=1/RATE)
79 +
80 +
81 + # Compute the power spectrogram on the mel scale
82 + S = librosa.feature.melspectrogram(y=data, sr=RATE, n_fft=2048, hop_length=1024, n_mels=512)
83 +
84 + # Find the frequency bin with the maximum energy in each frame
85 + max_bin = np.argmax(S, axis=0)
86 +
87 + # Find the dominant frequency in each frame
88 + dominant_freqs = freqs[max_bin]
89 +
90 + # Compute the median of the dominant frequencies to get the overall dominant frequency
91 + dominant_freq = np.median(dominant_freqs)
92 +
93 + print("Dominant frequency: {:.2f} Hz\n".format(dominant_freq))
94 +
95 +
96 +threading.Thread(target=get_stream_data).start()
97 +
98 +while True:
99 + get_data = threading.Thread(target=get_stream_data)
100 + calc_data = threading.Thread(target=print_dominant_freq)
101 + #get_decibel = threading.Thread(target=get_max_average_db)
102 +
103 + get_data.start()
104 + calc_data.start()
105 + #get_decibel.start()
106 +
107 + get_data.join()
108 +
109 + sys.stdin.flush()
1 +시나리오 작성 먼저 해보기. -> 때리는 소리따라 나오게,
2 +시나리오에 따라서 딜레이를 줄이는 방식을 좀 더 만들어 보자.
3 +
4 +소리 왜곡방법은 알아서 재밌어 보이는걸로 해보자.
5 +지향성마이크도 한번 달아보기.
6 +
7 +1. 실제 소리변형으로 뭔가 만들기
8 +- 실제 소리가 들릴거냐 말거냐
9 +2. identification만 하고, 다른 소리 재생도 할 수 있음.
...\ No newline at end of file ...\ No newline at end of file
1 import sys 1 import sys
2 - 2 +import numpy as np
3 import pyaudio 3 import pyaudio
4 +import matplotlib.pyplot as plt
4 5
5 RECORD_SECONDS = 5 6 RECORD_SECONDS = 5
6 CHUNK = 1024 7 CHUNK = 1024
...@@ -16,15 +17,54 @@ stream = p.open(format=p.get_format_from_width(2), ...@@ -16,15 +17,54 @@ stream = p.open(format=p.get_format_from_width(2),
16 17
17 print('* recording') 18 print('* recording')
18 19
20 +# Initialize plot
21 +fig, ax = plt.subplots()
22 +x = np.arange(0, RECORD_SECONDS, CHUNK / RATE)
23 +line, = ax.plot(x, np.zeros(len(x)))
24 +
19 def add_echo(data, output_stream): 25 def add_echo(data, output_stream):
20 output_stream.write(data) 26 output_stream.write(data)
21 27
28 +# Initialize data arrays
29 +db_data = np.zeros(len(x))
30 +
22 31
23 for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): 32 for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
24 - add_echo(stream.read(CHUNK), stream) 33 + byte_stream = stream.read(CHUNK)
34 + data = np.frombuffer(byte_stream, dtype=np.int16)
35 + fft_data = np.fft.fft(data)
36 + # 주파수 대역 설정
37 + freq_range = (200, 2000) # 200Hz ~ 2kHz
38 +
39 + # 주파수 스펙트럼에서 주파수 대역 추출
40 + freq_spectrum = fft_data[(freq_range[0] // (RATE // len(data))) : (freq_range[1] // (RATE // len(data)))]
41 +
42 + # 에너지 계산
43 + energy = np.sum(np.abs(freq_spectrum)**2)
44 + # 소리의 세기 계산
45 + db = 10 * np.log10(energy)
25 46
47 + # 소리의 높낮이 계산
48 + max_freq = (np.argmax(np.abs(freq_spectrum)) * RATE) / len(data)
49 + print("freq : ", max_freq)
50 + print("db : ", db)
51 +
52 + # Add data to arrays
53 + db_data = np.roll(db_data, -1)
54 + db_data[-1] = db
55 +
56 + # Update plot
57 + line.set_ydata(db_data)
58 + ax.relim()
59 + ax.autoscale_view()
60 +
61 + plt.draw()
62 + plt.pause(0.001)
26 63
27 print('* done') 64 print('* done')
28 65
29 stream.close() 66 stream.close()
30 p.terminate() 67 p.terminate()
68 +
69 +# Show plot
70 +plt.show()
......