emit.js
33.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
/**
* Copyright (c) 2014, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* https://raw.github.com/facebook/regenerator/master/LICENSE file. An
* additional grant of patent rights can be found in the PATENTS file in
* the same directory.
*/
var assert = require("assert");
var types = require("recast").types;
var isArray = types.builtInTypes.array;
var b = types.builders;
var n = types.namedTypes;
var leap = require("./leap");
var meta = require("./meta");
var util = require("./util");
var runtimeProperty = util.runtimeProperty;
var hasOwn = Object.prototype.hasOwnProperty;
function Emitter(contextId) {
assert.ok(this instanceof Emitter);
n.Identifier.assert(contextId);
// Used to generate unique temporary names.
this.nextTempId = 0;
Object.defineProperties(this, {
// In order to make sure the context object does not collide with
// anything in the local scope, we might have to rename it, so we
// refer to it symbolically instead of just assuming that it will be
// called "context".
contextId: { value: contextId },
// An append-only list of Statements that grows each time this.emit is
// called.
listing: { value: [] },
// A sparse array whose keys correspond to locations in this.listing
// that have been marked as branch/jump targets.
marked: { value: [true] },
// The last location will be marked when this.getDispatchLoop is
// called.
finalLoc: { value: loc() },
// A list of all leap.TryEntry statements emitted.
tryEntries: { value: [] }
});
// The .leapManager property needs to be defined by a separate
// defineProperties call so that .finalLoc will be visible to the
// leap.LeapManager constructor.
Object.defineProperties(this, {
// Each time we evaluate the body of a loop, we tell this.leapManager
// to enter a nested loop context that determines the meaning of break
// and continue statements therein.
leapManager: { value: new leap.LeapManager(this) }
});
}
var Ep = Emitter.prototype;
exports.Emitter = Emitter;
// Offsets into this.listing that could be used as targets for branches or
// jumps are represented as numeric Literal nodes. This representation has
// the amazingly convenient benefit of allowing the exact value of the
// location to be determined at any time, even after generating code that
// refers to the location.
function loc() {
return b.literal(-1);
}
// Sets the exact value of the given location to the offset of the next
// Statement emitted.
Ep.mark = function(loc) {
n.Literal.assert(loc);
var index = this.listing.length;
if (loc.value === -1) {
loc.value = index;
} else {
// Locations can be marked redundantly, but their values cannot change
// once set the first time.
assert.strictEqual(loc.value, index);
}
this.marked[index] = true;
return loc;
};
Ep.emit = function(node) {
if (n.Expression.check(node))
node = b.expressionStatement(node);
n.Statement.assert(node);
this.listing.push(node);
};
// Shorthand for emitting assignment statements. This will come in handy
// for assignments to temporary variables.
Ep.emitAssign = function(lhs, rhs) {
this.emit(this.assign(lhs, rhs));
return lhs;
};
// Shorthand for an assignment statement.
Ep.assign = function(lhs, rhs) {
return b.expressionStatement(
b.assignmentExpression("=", lhs, rhs));
};
// Convenience function for generating expressions like context.next,
// context.sent, and context.rval.
Ep.contextProperty = function(name, computed) {
return b.memberExpression(
this.contextId,
computed ? b.literal(name) : b.identifier(name),
!!computed
);
};
// Shorthand for setting context.rval and jumping to `context.stop()`.
Ep.stop = function(rval) {
if (rval) {
this.setReturnValue(rval);
}
this.jump(this.finalLoc);
};
Ep.setReturnValue = function(valuePath) {
n.Expression.assert(valuePath.value);
this.emitAssign(
this.contextProperty("rval"),
this.explodeExpression(valuePath)
);
};
Ep.clearPendingException = function(tryLoc, assignee) {
n.Literal.assert(tryLoc);
var catchCall = b.callExpression(
this.contextProperty("catch", true),
[tryLoc]
);
if (assignee) {
this.emitAssign(assignee, catchCall);
} else {
this.emit(catchCall);
}
};
// Emits code for an unconditional jump to the given location, even if the
// exact value of the location is not yet known.
Ep.jump = function(toLoc) {
this.emitAssign(this.contextProperty("next"), toLoc);
this.emit(b.breakStatement());
};
// Conditional jump.
Ep.jumpIf = function(test, toLoc) {
n.Expression.assert(test);
n.Literal.assert(toLoc);
this.emit(b.ifStatement(
test,
b.blockStatement([
this.assign(this.contextProperty("next"), toLoc),
b.breakStatement()
])
));
};
// Conditional jump, with the condition negated.
Ep.jumpIfNot = function(test, toLoc) {
n.Expression.assert(test);
n.Literal.assert(toLoc);
var negatedTest;
if (n.UnaryExpression.check(test) &&
test.operator === "!") {
// Avoid double negation.
negatedTest = test.argument;
} else {
negatedTest = b.unaryExpression("!", test);
}
this.emit(b.ifStatement(
negatedTest,
b.blockStatement([
this.assign(this.contextProperty("next"), toLoc),
b.breakStatement()
])
));
};
// Returns a unique MemberExpression that can be used to store and
// retrieve temporary values. Since the object of the member expression is
// the context object, which is presumed to coexist peacefully with all
// other local variables, and since we just increment `nextTempId`
// monotonically, uniqueness is assured.
Ep.makeTempVar = function() {
return this.contextProperty("t" + this.nextTempId++);
};
Ep.getContextFunction = function(id) {
return b.functionExpression(
id || null/*Anonymous*/,
[this.contextId],
b.blockStatement([this.getDispatchLoop()]),
false, // Not a generator anymore!
false // Nor an expression.
);
};
// Turns this.listing into a loop of the form
//
// while (1) switch (context.next) {
// case 0:
// ...
// case n:
// return context.stop();
// }
//
// Each marked location in this.listing will correspond to one generated
// case statement.
Ep.getDispatchLoop = function() {
var self = this;
var cases = [];
var current;
// If we encounter a break, continue, or return statement in a switch
// case, we can skip the rest of the statements until the next case.
var alreadyEnded = false;
self.listing.forEach(function(stmt, i) {
if (self.marked.hasOwnProperty(i)) {
cases.push(b.switchCase(
b.literal(i),
current = []));
alreadyEnded = false;
}
if (!alreadyEnded) {
current.push(stmt);
if (isSwitchCaseEnder(stmt))
alreadyEnded = true;
}
});
// Now that we know how many statements there will be in this.listing,
// we can finally resolve this.finalLoc.value.
this.finalLoc.value = this.listing.length;
cases.push(
b.switchCase(this.finalLoc, [
// Intentionally fall through to the "end" case...
]),
// So that the runtime can jump to the final location without having
// to know its offset, we provide the "end" case as a synonym.
b.switchCase(b.literal("end"), [
// This will check/clear both context.thrown and context.rval.
b.returnStatement(
b.callExpression(this.contextProperty("stop"), [])
)
])
);
return b.whileStatement(
b.literal(1),
b.switchStatement(
b.assignmentExpression(
"=",
this.contextProperty("prev"),
this.contextProperty("next")
),
cases
)
);
};
// See comment above re: alreadyEnded.
function isSwitchCaseEnder(stmt) {
return n.BreakStatement.check(stmt)
|| n.ContinueStatement.check(stmt)
|| n.ReturnStatement.check(stmt)
|| n.ThrowStatement.check(stmt);
}
Ep.getTryLocsList = function() {
if (this.tryEntries.length === 0) {
// To avoid adding a needless [] to the majority of runtime.wrap
// argument lists, force the caller to handle this case specially.
return null;
}
var lastLocValue = 0;
return b.arrayExpression(
this.tryEntries.map(function(tryEntry) {
var thisLocValue = tryEntry.firstLoc.value;
assert.ok(thisLocValue >= lastLocValue, "try entries out of order");
lastLocValue = thisLocValue;
var ce = tryEntry.catchEntry;
var fe = tryEntry.finallyEntry;
var locs = [
tryEntry.firstLoc,
// The null here makes a hole in the array.
ce ? ce.firstLoc : null
];
if (fe) {
locs[2] = fe.firstLoc;
locs[3] = fe.afterLoc;
}
return b.arrayExpression(locs);
})
);
};
// All side effects must be realized in order.
// If any subexpression harbors a leap, all subexpressions must be
// neutered of side effects.
// No destructive modification of AST nodes.
Ep.explode = function(path, ignoreResult) {
assert.ok(path instanceof types.NodePath);
var node = path.value;
var self = this;
n.Node.assert(node);
if (n.Statement.check(node))
return self.explodeStatement(path);
if (n.Expression.check(node))
return self.explodeExpression(path, ignoreResult);
if (n.Declaration.check(node))
throw getDeclError(node);
switch (node.type) {
case "Program":
return path.get("body").map(
self.explodeStatement,
self
);
case "VariableDeclarator":
throw getDeclError(node);
// These node types should be handled by their parent nodes
// (ObjectExpression, SwitchStatement, and TryStatement, respectively).
case "Property":
case "SwitchCase":
case "CatchClause":
throw new Error(
node.type + " nodes should be handled by their parents");
default:
throw new Error(
"unknown Node of type " +
JSON.stringify(node.type));
}
};
function getDeclError(node) {
return new Error(
"all declarations should have been transformed into " +
"assignments before the Exploder began its work: " +
JSON.stringify(node));
}
Ep.explodeStatement = function(path, labelId) {
assert.ok(path instanceof types.NodePath);
var stmt = path.value;
var self = this;
n.Statement.assert(stmt);
if (labelId) {
n.Identifier.assert(labelId);
} else {
labelId = null;
}
// Explode BlockStatement nodes even if they do not contain a yield,
// because we don't want or need the curly braces.
if (n.BlockStatement.check(stmt)) {
return path.get("body").each(
self.explodeStatement,
self
);
}
if (!meta.containsLeap(stmt)) {
// Technically we should be able to avoid emitting the statement
// altogether if !meta.hasSideEffects(stmt), but that leads to
// confusing generated code (for instance, `while (true) {}` just
// disappears) and is probably a more appropriate job for a dedicated
// dead code elimination pass.
self.emit(stmt);
return;
}
switch (stmt.type) {
case "ExpressionStatement":
self.explodeExpression(path.get("expression"), true);
break;
case "LabeledStatement":
var after = loc();
// Did you know you can break from any labeled block statement or
// control structure? Well, you can! Note: when a labeled loop is
// encountered, the leap.LabeledEntry created here will immediately
// enclose a leap.LoopEntry on the leap manager's stack, and both
// entries will have the same label. Though this works just fine, it
// may seem a bit redundant. In theory, we could check here to
// determine if stmt knows how to handle its own label; for example,
// stmt happens to be a WhileStatement and so we know it's going to
// establish its own LoopEntry when we explode it (below). Then this
// LabeledEntry would be unnecessary. Alternatively, we might be
// tempted not to pass stmt.label down into self.explodeStatement,
// because we've handled the label here, but that's a mistake because
// labeled loops may contain labeled continue statements, which is not
// something we can handle in this generic case. All in all, I think a
// little redundancy greatly simplifies the logic of this case, since
// it's clear that we handle all possible LabeledStatements correctly
// here, regardless of whether they interact with the leap manager
// themselves. Also remember that labels and break/continue-to-label
// statements are rare, and all of this logic happens at transform
// time, so it has no additional runtime cost.
self.leapManager.withEntry(
new leap.LabeledEntry(after, stmt.label),
function() {
self.explodeStatement(path.get("body"), stmt.label);
}
);
self.mark(after);
break;
case "WhileStatement":
var before = loc();
var after = loc();
self.mark(before);
self.jumpIfNot(self.explodeExpression(path.get("test")), after);
self.leapManager.withEntry(
new leap.LoopEntry(after, before, labelId),
function() { self.explodeStatement(path.get("body")); }
);
self.jump(before);
self.mark(after);
break;
case "DoWhileStatement":
var first = loc();
var test = loc();
var after = loc();
self.mark(first);
self.leapManager.withEntry(
new leap.LoopEntry(after, test, labelId),
function() { self.explode(path.get("body")); }
);
self.mark(test);
self.jumpIf(self.explodeExpression(path.get("test")), first);
self.mark(after);
break;
case "ForStatement":
var head = loc();
var update = loc();
var after = loc();
if (stmt.init) {
// We pass true here to indicate that if stmt.init is an expression
// then we do not care about its result.
self.explode(path.get("init"), true);
}
self.mark(head);
if (stmt.test) {
self.jumpIfNot(self.explodeExpression(path.get("test")), after);
} else {
// No test means continue unconditionally.
}
self.leapManager.withEntry(
new leap.LoopEntry(after, update, labelId),
function() { self.explodeStatement(path.get("body")); }
);
self.mark(update);
if (stmt.update) {
// We pass true here to indicate that if stmt.update is an
// expression then we do not care about its result.
self.explode(path.get("update"), true);
}
self.jump(head);
self.mark(after);
break;
case "ForInStatement":
var head = loc();
var after = loc();
var keyIterNextFn = self.makeTempVar();
self.emitAssign(
keyIterNextFn,
b.callExpression(
runtimeProperty("keys"),
[self.explodeExpression(path.get("right"))]
)
);
self.mark(head);
var keyInfoTmpVar = self.makeTempVar();
self.jumpIf(
b.memberExpression(
b.assignmentExpression(
"=",
keyInfoTmpVar,
b.callExpression(keyIterNextFn, [])
),
b.identifier("done"),
false
),
after
);
self.emitAssign(
stmt.left,
b.memberExpression(
keyInfoTmpVar,
b.identifier("value"),
false
)
);
self.leapManager.withEntry(
new leap.LoopEntry(after, head, labelId),
function() { self.explodeStatement(path.get("body")); }
);
self.jump(head);
self.mark(after);
break;
case "BreakStatement":
self.emitAbruptCompletion({
type: "break",
target: self.leapManager.getBreakLoc(stmt.label)
});
break;
case "ContinueStatement":
self.emitAbruptCompletion({
type: "continue",
target: self.leapManager.getContinueLoc(stmt.label)
});
break;
case "SwitchStatement":
// Always save the discriminant into a temporary variable in case the
// test expressions overwrite values like context.sent.
var disc = self.emitAssign(
self.makeTempVar(),
self.explodeExpression(path.get("discriminant"))
);
var after = loc();
var defaultLoc = loc();
var condition = defaultLoc;
var caseLocs = [];
// If there are no cases, .cases might be undefined.
var cases = stmt.cases || [];
for (var i = cases.length - 1; i >= 0; --i) {
var c = cases[i];
n.SwitchCase.assert(c);
if (c.test) {
condition = b.conditionalExpression(
b.binaryExpression("===", disc, c.test),
caseLocs[i] = loc(),
condition
);
} else {
caseLocs[i] = defaultLoc;
}
}
self.jump(self.explodeExpression(
new types.NodePath(condition, path, "discriminant")
));
self.leapManager.withEntry(
new leap.SwitchEntry(after),
function() {
path.get("cases").each(function(casePath) {
var c = casePath.value;
var i = casePath.name;
self.mark(caseLocs[i]);
casePath.get("consequent").each(
self.explodeStatement,
self
);
});
}
);
self.mark(after);
if (defaultLoc.value === -1) {
self.mark(defaultLoc);
assert.strictEqual(after.value, defaultLoc.value);
}
break;
case "IfStatement":
var elseLoc = stmt.alternate && loc();
var after = loc();
self.jumpIfNot(
self.explodeExpression(path.get("test")),
elseLoc || after
);
self.explodeStatement(path.get("consequent"));
if (elseLoc) {
self.jump(after);
self.mark(elseLoc);
self.explodeStatement(path.get("alternate"));
}
self.mark(after);
break;
case "ReturnStatement":
self.emitAbruptCompletion({
type: "return",
value: self.explodeExpression(path.get("argument"))
});
break;
case "WithStatement":
throw new Error(
node.type + " not supported in generator functions.");
case "TryStatement":
var after = loc();
var handler = stmt.handler;
if (!handler && stmt.handlers) {
handler = stmt.handlers[0] || null;
}
var catchLoc = handler && loc();
var catchEntry = catchLoc && new leap.CatchEntry(
catchLoc,
handler.param
);
var finallyLoc = stmt.finalizer && loc();
var finallyEntry = finallyLoc &&
new leap.FinallyEntry(finallyLoc, after);
var tryEntry = new leap.TryEntry(
self.getUnmarkedCurrentLoc(),
catchEntry,
finallyEntry
);
self.tryEntries.push(tryEntry);
self.updateContextPrevLoc(tryEntry.firstLoc);
self.leapManager.withEntry(tryEntry, function() {
self.explodeStatement(path.get("block"));
if (catchLoc) {
if (finallyLoc) {
// If we have both a catch block and a finally block, then
// because we emit the catch block first, we need to jump over
// it to the finally block.
self.jump(finallyLoc);
} else {
// If there is no finally block, then we need to jump over the
// catch block to the fall-through location.
self.jump(after);
}
self.updateContextPrevLoc(self.mark(catchLoc));
var bodyPath = path.get("handler", "body");
var safeParam = self.makeTempVar();
self.clearPendingException(tryEntry.firstLoc, safeParam);
var catchScope = bodyPath.scope;
var catchParamName = handler.param.name;
n.CatchClause.assert(catchScope.node);
assert.strictEqual(catchScope.lookup(catchParamName), catchScope);
types.visit(bodyPath, {
visitIdentifier: function(path) {
if (util.isReference(path, catchParamName) &&
path.scope.lookup(catchParamName) === catchScope) {
return safeParam;
}
this.traverse(path);
},
visitFunction: function(path) {
if (path.scope.declares(catchParamName)) {
// Don't descend into nested scopes that shadow the catch
// parameter with their own declarations. This isn't
// logically necessary because of the path.scope.lookup we
// do in visitIdentifier, but it saves time.
return false;
}
this.traverse(path);
}
});
self.leapManager.withEntry(catchEntry, function() {
self.explodeStatement(bodyPath);
});
}
if (finallyLoc) {
self.updateContextPrevLoc(self.mark(finallyLoc));
self.leapManager.withEntry(finallyEntry, function() {
self.explodeStatement(path.get("finalizer"));
});
self.emit(b.returnStatement(b.callExpression(
self.contextProperty("finish"),
[finallyEntry.firstLoc]
)));
}
});
self.mark(after);
break;
case "ThrowStatement":
self.emit(b.throwStatement(
self.explodeExpression(path.get("argument"))
));
break;
default:
throw new Error(
"unknown Statement of type " +
JSON.stringify(stmt.type));
}
};
Ep.emitAbruptCompletion = function(record) {
if (!isValidCompletion(record)) {
assert.ok(
false,
"invalid completion record: " +
JSON.stringify(record)
);
}
assert.notStrictEqual(
record.type, "normal",
"normal completions are not abrupt"
);
var abruptArgs = [b.literal(record.type)];
if (record.type === "break" ||
record.type === "continue") {
n.Literal.assert(record.target);
abruptArgs[1] = record.target;
} else if (record.type === "return" ||
record.type === "throw") {
if (record.value) {
n.Expression.assert(record.value);
abruptArgs[1] = record.value;
}
}
this.emit(
b.returnStatement(
b.callExpression(
this.contextProperty("abrupt"),
abruptArgs
)
)
);
};
function isValidCompletion(record) {
var type = record.type;
if (type === "normal") {
return !hasOwn.call(record, "target");
}
if (type === "break" ||
type === "continue") {
return !hasOwn.call(record, "value")
&& n.Literal.check(record.target);
}
if (type === "return" ||
type === "throw") {
return hasOwn.call(record, "value")
&& !hasOwn.call(record, "target");
}
return false;
}
// Not all offsets into emitter.listing are potential jump targets. For
// example, execution typically falls into the beginning of a try block
// without jumping directly there. This method returns the current offset
// without marking it, so that a switch case will not necessarily be
// generated for this offset (I say "not necessarily" because the same
// location might end up being marked in the process of emitting other
// statements). There's no logical harm in marking such locations as jump
// targets, but minimizing the number of switch cases keeps the generated
// code shorter.
Ep.getUnmarkedCurrentLoc = function() {
return b.literal(this.listing.length);
};
// The context.prev property takes the value of context.next whenever we
// evaluate the switch statement discriminant, which is generally good
// enough for tracking the last location we jumped to, but sometimes
// context.prev needs to be more precise, such as when we fall
// successfully out of a try block and into a finally block without
// jumping. This method exists to update context.prev to the freshest
// available location. If we were implementing a full interpreter, we
// would know the location of the current instruction with complete
// precision at all times, but we don't have that luxury here, as it would
// be costly and verbose to set context.prev before every statement.
Ep.updateContextPrevLoc = function(loc) {
if (loc) {
n.Literal.assert(loc);
if (loc.value === -1) {
// If an uninitialized location literal was passed in, set its value
// to the current this.listing.length.
loc.value = this.listing.length;
} else {
// Otherwise assert that the location matches the current offset.
assert.strictEqual(loc.value, this.listing.length);
}
} else {
loc = this.getUnmarkedCurrentLoc();
}
// Make sure context.prev is up to date in case we fell into this try
// statement without jumping to it. TODO Consider avoiding this
// assignment when we know control must have jumped here.
this.emitAssign(this.contextProperty("prev"), loc);
};
Ep.explodeExpression = function(path, ignoreResult) {
assert.ok(path instanceof types.NodePath);
var expr = path.value;
if (expr) {
n.Expression.assert(expr);
} else {
return expr;
}
var self = this;
var result; // Used optionally by several cases below.
function finish(expr) {
n.Expression.assert(expr);
if (ignoreResult) {
self.emit(expr);
} else {
return expr;
}
}
// If the expression does not contain a leap, then we either emit the
// expression as a standalone statement or return it whole.
if (!meta.containsLeap(expr)) {
return finish(expr);
}
// If any child contains a leap (such as a yield or labeled continue or
// break statement), then any sibling subexpressions will almost
// certainly have to be exploded in order to maintain the order of their
// side effects relative to the leaping child(ren).
var hasLeapingChildren = meta.containsLeap.onlyChildren(expr);
// In order to save the rest of explodeExpression from a combinatorial
// trainwreck of special cases, explodeViaTempVar is responsible for
// deciding when a subexpression needs to be "exploded," which is my
// very technical term for emitting the subexpression as an assignment
// to a temporary variable and the substituting the temporary variable
// for the original subexpression. Think of exploded view diagrams, not
// Michael Bay movies. The point of exploding subexpressions is to
// control the precise order in which the generated code realizes the
// side effects of those subexpressions.
function explodeViaTempVar(tempVar, childPath, ignoreChildResult) {
assert.ok(childPath instanceof types.NodePath);
assert.ok(
!ignoreChildResult || !tempVar,
"Ignoring the result of a child expression but forcing it to " +
"be assigned to a temporary variable?"
);
var result = self.explodeExpression(childPath, ignoreChildResult);
if (ignoreChildResult) {
// Side effects already emitted above.
} else if (tempVar || (hasLeapingChildren &&
!n.Literal.check(result))) {
// If tempVar was provided, then the result will always be assigned
// to it, even if the result does not otherwise need to be assigned
// to a temporary variable. When no tempVar is provided, we have
// the flexibility to decide whether a temporary variable is really
// necessary. Unfortunately, in general, a temporary variable is
// required whenever any child contains a yield expression, since it
// is difficult to prove (at all, let alone efficiently) whether
// this result would evaluate to the same value before and after the
// yield (see #206). One narrow case where we can prove it doesn't
// matter (and thus we do not need a temporary variable) is when the
// result in question is a Literal value.
result = self.emitAssign(
tempVar || self.makeTempVar(),
result
);
}
return result;
}
// If ignoreResult is true, then we must take full responsibility for
// emitting the expression with all its side effects, and we should not
// return a result.
switch (expr.type) {
case "MemberExpression":
return finish(b.memberExpression(
self.explodeExpression(path.get("object")),
expr.computed
? explodeViaTempVar(null, path.get("property"))
: expr.property,
expr.computed
));
case "CallExpression":
var calleePath = path.get("callee");
var argsPath = path.get("arguments");
var newCallee;
var newArgs = [];
var hasLeapingArgs = false;
argsPath.each(function(argPath) {
hasLeapingArgs = hasLeapingArgs ||
meta.containsLeap(argPath.value);
});
if (n.MemberExpression.check(calleePath.value)) {
if (hasLeapingArgs) {
// If the arguments of the CallExpression contained any yield
// expressions, then we need to be sure to evaluate the callee
// before evaluating the arguments, but if the callee was a member
// expression, then we must be careful that the object of the
// member expression still gets bound to `this` for the call.
var newObject = explodeViaTempVar(
// Assign the exploded callee.object expression to a temporary
// variable so that we can use it twice without reevaluating it.
self.makeTempVar(),
calleePath.get("object")
);
var newProperty = calleePath.value.computed
? explodeViaTempVar(null, calleePath.get("property"))
: calleePath.value.property;
newArgs.unshift(newObject);
newCallee = b.memberExpression(
b.memberExpression(
newObject,
newProperty,
calleePath.value.computed
),
b.identifier("call"),
false
);
} else {
newCallee = self.explodeExpression(calleePath);
}
} else {
newCallee = self.explodeExpression(calleePath);
if (n.MemberExpression.check(newCallee)) {
// If the callee was not previously a MemberExpression, then the
// CallExpression was "unqualified," meaning its `this` object
// should be the global object. If the exploded expression has
// become a MemberExpression (e.g. a context property, probably a
// temporary variable), then we need to force it to be unqualified
// by using the (0, object.property)(...) trick; otherwise, it
// will receive the object of the MemberExpression as its `this`
// object.
newCallee = b.sequenceExpression([
b.literal(0),
newCallee
]);
}
}
argsPath.each(function(argPath) {
newArgs.push(explodeViaTempVar(null, argPath));
});
return finish(b.callExpression(
newCallee,
newArgs
));
case "NewExpression":
return finish(b.newExpression(
explodeViaTempVar(null, path.get("callee")),
path.get("arguments").map(function(argPath) {
return explodeViaTempVar(null, argPath);
})
));
case "ObjectExpression":
return finish(b.objectExpression(
path.get("properties").map(function(propPath) {
return b.property(
propPath.value.kind,
propPath.value.key,
explodeViaTempVar(null, propPath.get("value"))
);
})
));
case "ArrayExpression":
return finish(b.arrayExpression(
path.get("elements").map(function(elemPath) {
return explodeViaTempVar(null, elemPath);
})
));
case "SequenceExpression":
var lastIndex = expr.expressions.length - 1;
path.get("expressions").each(function(exprPath) {
if (exprPath.name === lastIndex) {
result = self.explodeExpression(exprPath, ignoreResult);
} else {
self.explodeExpression(exprPath, true);
}
});
return result;
case "LogicalExpression":
var after = loc();
if (!ignoreResult) {
result = self.makeTempVar();
}
var left = explodeViaTempVar(result, path.get("left"));
if (expr.operator === "&&") {
self.jumpIfNot(left, after);
} else {
assert.strictEqual(expr.operator, "||");
self.jumpIf(left, after);
}
explodeViaTempVar(result, path.get("right"), ignoreResult);
self.mark(after);
return result;
case "ConditionalExpression":
var elseLoc = loc();
var after = loc();
var test = self.explodeExpression(path.get("test"));
self.jumpIfNot(test, elseLoc);
if (!ignoreResult) {
result = self.makeTempVar();
}
explodeViaTempVar(result, path.get("consequent"), ignoreResult);
self.jump(after);
self.mark(elseLoc);
explodeViaTempVar(result, path.get("alternate"), ignoreResult);
self.mark(after);
return result;
case "UnaryExpression":
return finish(b.unaryExpression(
expr.operator,
// Can't (and don't need to) break up the syntax of the argument.
// Think about delete a[b].
self.explodeExpression(path.get("argument")),
!!expr.prefix
));
case "BinaryExpression":
return finish(b.binaryExpression(
expr.operator,
explodeViaTempVar(null, path.get("left")),
explodeViaTempVar(null, path.get("right"))
));
case "AssignmentExpression":
return finish(b.assignmentExpression(
expr.operator,
self.explodeExpression(path.get("left")),
self.explodeExpression(path.get("right"))
));
case "UpdateExpression":
return finish(b.updateExpression(
expr.operator,
self.explodeExpression(path.get("argument")),
expr.prefix
));
case "YieldExpression":
var after = loc();
var arg = expr.argument && self.explodeExpression(path.get("argument"));
if (arg && expr.delegate) {
var result = self.makeTempVar();
self.emit(b.returnStatement(b.callExpression(
self.contextProperty("delegateYield"), [
arg,
b.literal(result.property.name),
after
]
)));
self.mark(after);
return result;
}
self.emitAssign(self.contextProperty("next"), after);
self.emit(b.returnStatement(arg || null));
self.mark(after);
return self.contextProperty("sent");
default:
throw new Error(
"unknown Expression of type " +
JSON.stringify(expr.type));
}
};