Showing
1 changed file
with
6 additions
and
0 deletions
... | @@ -13,12 +13,14 @@ public class AvgAdvTime { | ... | @@ -13,12 +13,14 @@ public class AvgAdvTime { |
13 | 13 | ||
14 | public static void main(String[] args) throws Exception { | 14 | public static void main(String[] args) throws Exception { |
15 | 15 | ||
16 | + // Start Spark Session | ||
16 | SparkSession spark = SparkSession | 17 | SparkSession spark = SparkSession |
17 | .builder() | 18 | .builder() |
18 | .master("local") | 19 | .master("local") |
19 | .appName("Java Spark SQL basic example") | 20 | .appName("Java Spark SQL basic example") |
20 | .getOrCreate(); | 21 | .getOrCreate(); |
21 | 22 | ||
23 | + // Read SCV to DataSet | ||
22 | Dataset<Row> df = spark.read().format("csv") | 24 | Dataset<Row> df = spark.read().format("csv") |
23 | .option("inferSchema", "true") | 25 | .option("inferSchema", "true") |
24 | .option("header", "true") | 26 | .option("header", "true") |
... | @@ -29,13 +31,17 @@ public class AvgAdvTime { | ... | @@ -29,13 +31,17 @@ public class AvgAdvTime { |
29 | newdf = newdf.withColumn("utc_attributed_time", df.col("attributed_time").cast("long")); | 31 | newdf = newdf.withColumn("utc_attributed_time", df.col("attributed_time").cast("long")); |
30 | newdf = newdf.drop("click_time").drop("attributed_time"); | 32 | newdf = newdf.drop("click_time").drop("attributed_time"); |
31 | 33 | ||
34 | + // set Window partition by 'ip' and 'app' order by 'utc_click_time' select rows between 1st row to current row | ||
32 | WindowSpec w = Window.partitionBy("ip", "app") | 35 | WindowSpec w = Window.partitionBy("ip", "app") |
33 | .orderBy("utc_click_time") | 36 | .orderBy("utc_click_time") |
34 | .rowsBetween(Window.unboundedPreceding(), Window.currentRow()); | 37 | .rowsBetween(Window.unboundedPreceding(), Window.currentRow()); |
35 | 38 | ||
39 | + // aggregation | ||
36 | newdf = newdf.withColumn("cum_count_click", count("utc_click_time").over(w)); | 40 | newdf = newdf.withColumn("cum_count_click", count("utc_click_time").over(w)); |
37 | newdf = newdf.withColumn("cum_sum_attributed", sum("is_attributed").over(w)); | 41 | newdf = newdf.withColumn("cum_sum_attributed", sum("is_attributed").over(w)); |
38 | newdf = newdf.withColumn("avg_efficient", col("cum_sum_attributed").divide(col("cum_count_click"))); | 42 | newdf = newdf.withColumn("avg_efficient", col("cum_sum_attributed").divide(col("cum_count_click"))); |
43 | + | ||
44 | + // print example | ||
39 | newdf.where("ip == '5348' and app == '19'").show(); | 45 | newdf.where("ip == '5348' and app == '19'").show(); |
40 | newdf.printSchema(); | 46 | newdf.printSchema(); |
41 | 47 | ... | ... |
-
Please register or login to post a comment