Toggle navigation
Toggle navigation
This project
Loading...
Sign in
신은섭(Shin Eun Seop)
/
2018-1-naver-ai-hackathon
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Graphs
Network
Create a new issue
Commits
Issue Boards
Authored by
신은섭(Shin Eun Seop)
2018-04-05 20:46:53 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
bfbc37e9fc3cb88eedbd3a64897561aa86712e14
bfbc37e9
1 parent
aadea7d8
add text-cnn
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
21 additions
and
35 deletions
kin/main.py
kin/main.py
View file @
bfbc37e
# -*- coding: utf-8 -*-
"""
Copyright 2018 NAVER Corp.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import
argparse
import
os
...
...
@@ -103,9 +85,9 @@ if __name__ == '__main__':
# User options
args
.
add_argument
(
'--output'
,
type
=
int
,
default
=
1
)
args
.
add_argument
(
'--epochs'
,
type
=
int
,
default
=
10
)
args
.
add_argument
(
'--batch'
,
type
=
int
,
default
=
2
000
)
args
.
add_argument
(
'--batch'
,
type
=
int
,
default
=
3
000
)
args
.
add_argument
(
'--strmaxlen'
,
type
=
int
,
default
=
400
)
args
.
add_argument
(
'--embedding'
,
type
=
int
,
default
=
8
)
args
.
add_argument
(
'--embedding'
,
type
=
int
,
default
=
20
)
args
.
add_argument
(
'--threshold'
,
type
=
float
,
default
=
0.5
)
config
=
args
.
parse_args
()
...
...
@@ -115,27 +97,31 @@ if __name__ == '__main__':
# 모델의 specification
input_size
=
config
.
embedding
*
config
.
strmaxlen
output_size
=
1
hidden_layer_size
=
200
learning_rate
=
0.001
learning_rate
=
0.01
character_size
=
251
x
=
tf
.
placeholder
(
tf
.
int32
,
[
None
,
config
.
strmaxlen
])
y_
=
tf
.
placeholder
(
tf
.
float32
,
[
None
,
output_size
])
keep_probs
=
tf
.
placeholder
(
tf
.
float32
)
# 임베딩
char_embedding
=
tf
.
get_variable
(
'char_embedding'
,
[
character_size
,
config
.
embedding
])
embedded
=
tf
.
nn
.
embedding_lookup
(
char_embedding
,
x
)
# 첫 번째 레이어
first_layer_weight
=
weight_variable
([
input_size
,
hidden_layer_size
])
first_layer_bias
=
bias_variable
([
hidden_layer_size
])
hidden_layer
=
tf
.
matmul
(
tf
.
reshape
(
embedded
,
(
-
1
,
input_size
)),
first_layer_weight
)
+
first_layer_bias
embedded_chars_base
=
tf
.
nn
.
embedding_lookup
(
char_embedding
,
x
)
embedded
=
tf
.
expand_dims
(
embedded_chars_base
,
-
1
)
print
(
"emb"
,
embedded
.
shape
)
## MODEL
l3_1
=
tf
.
layers
.
conv2d
(
embedded
,
512
,
[
3
,
config
.
embedding
],
activation
=
tf
.
nn
.
relu
)
print
(
"l3-1"
,
l3_1
.
shape
)
l3_1
=
tf
.
layers
.
max_pooling2d
(
l3_1
,
[
character_size
-
3
+
1
,
1
])
print
(
"l3-1 pool"
,
l3_1
.
shape
)
l3_2
=
tf
.
layers
.
conv2d
(
l3_1
,
1024
,
[
3
,
config
.
embedding
],
activation
=
tf
.
nn
.
relu
)
l3_2
=
tf
.
layers
.
max_pooling2d
(
l3_2
,
[
character_size
-
3
+
1
,
1
])
l3_3
=
tf
.
layers
.
conv2d
(
l3_2
,
512
,
[
3
,
config
.
embedding
],
activation
=
tf
.
nn
.
relu
)
l3_3
=
tf
.
layers
.
max_pooling2d
(
l3_3
,
[
character_size
-
3
+
1
,
1
])
flatten
=
tf
.
fontrib
.
layers
.
flatten
(
l3_3
)
drop
=
tf
.
layers
.
dropout
(
l3_2
,
keep_probs
)
output_sigmoid
=
tf
.
layers
.
dense
(
flatten
,
output_size
,
activation
=
tf
.
nn
.
sigmoid
)
# 두 번째 (아웃풋) 레이어
second_layer_weight
=
weight_variable
([
hidden_layer_size
,
output_size
])
second_layer_bias
=
bias_variable
([
output_size
])
output
=
tf
.
matmul
(
hidden_layer
,
second_layer_weight
)
+
second_layer_bias
output_sigmoid
=
tf
.
sigmoid
(
output
)
# loss와 optimizer
binary_cross_entropy
=
tf
.
reduce_mean
(
-
(
y_
*
tf
.
log
(
output_sigmoid
))
-
(
1
-
y_
)
*
tf
.
log
(
1
-
output_sigmoid
))
...
...
@@ -163,7 +149,7 @@ if __name__ == '__main__':
avg_loss
=
0.0
for
i
,
(
data
,
labels
)
in
enumerate
(
_batch_loader
(
dataset
,
config
.
batch
)):
_
,
loss
=
sess
.
run
([
train_step
,
binary_cross_entropy
],
feed_dict
=
{
x
:
data
,
y_
:
labels
})
feed_dict
=
{
x
:
data
,
y_
:
labels
,
keep_probs
:
0.9
})
print
(
'Batch : '
,
i
+
1
,
'/'
,
one_batch_size
,
', BCE in this minibatch: '
,
float
(
loss
))
avg_loss
+=
float
(
loss
)
...
...
Please
register
or
login
to post a comment