Dialect.cpp
10.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
//===- Dialect.cpp - Toy IR Dialect registration in MLIR ------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the dialect for the Toy IR: custom type parsing and
// operation verification.
//
//===----------------------------------------------------------------------===//
#include "toy/Dialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Transforms/InliningUtils.h"
using namespace mlir;
using namespace mlir::toy;
//===----------------------------------------------------------------------===//
// ToyInlinerInterface
//===----------------------------------------------------------------------===//
/// This class defines the interface for handling inlining with Toy
/// operations.
struct ToyInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
//===--------------------------------------------------------------------===//
// Analysis Hooks
//===--------------------------------------------------------------------===//
/// All operations within toy can be inlined.
bool isLegalToInline(Operation *, Region *,
BlockAndValueMapping &) const final {
return true;
}
//===--------------------------------------------------------------------===//
// Transformation Hooks
//===--------------------------------------------------------------------===//
/// Handle the given inlined terminator(toy.return) by replacing it with a new
/// operation as necessary.
void handleTerminator(Operation *op,
ArrayRef<Value> valuesToRepl) const final {
// Only "toy.return" needs to be handled here.
auto returnOp = cast<ReturnOp>(op);
// Replace the values directly with the return operands.
assert(returnOp.getNumOperands() == valuesToRepl.size());
for (const auto &it : llvm::enumerate(returnOp.getOperands()))
valuesToRepl[it.index()].replaceAllUsesWith(it.value());
}
/// Attempts to materialize a conversion for a type mismatch between a call
/// from this dialect, and a callable region. This method should generate an
/// operation that takes 'input' as the only operand, and produces a single
/// result of 'resultType'. If a conversion can not be generated, nullptr
/// should be returned.
Operation *materializeCallConversion(OpBuilder &builder, Value input,
Type resultType,
Location conversionLoc) const final {
return builder.create<CastOp>(conversionLoc, resultType, input);
}
};
//===----------------------------------------------------------------------===//
// ToyDialect
//===----------------------------------------------------------------------===//
/// Dialect creation, the instance will be owned by the context. This is the
/// point of registration of custom types and operations for the dialect.
ToyDialect::ToyDialect(mlir::MLIRContext *ctx) : mlir::Dialect("toy", ctx) {
addOperations<
#define GET_OP_LIST
#include "toy/Ops.cpp.inc"
>();
addInterfaces<ToyInlinerInterface>();
}
//===----------------------------------------------------------------------===//
// Toy Operations
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ConstantOp
/// Build a constant operation.
/// The builder is passed as an argument, so is the state that this method is
/// expected to fill in order to build the operation.
void ConstantOp::build(mlir::Builder *builder, mlir::OperationState &state,
double value) {
auto dataType = RankedTensorType::get({}, builder->getF64Type());
auto dataAttribute = DenseElementsAttr::get(dataType, value);
ConstantOp::build(builder, state, dataType, dataAttribute);
}
/// Verifier for the constant operation. This corresponds to the `::verify(...)`
/// in the op definition.
static mlir::LogicalResult verify(ConstantOp op) {
// If the return type of the constant is not an unranked tensor, the shape
// must match the shape of the attribute holding the data.
auto resultType = op.getResult().getType().dyn_cast<mlir::RankedTensorType>();
if (!resultType)
return success();
// Check that the rank of the attribute type matches the rank of the constant
// result type.
auto attrType = op.value().getType().cast<mlir::TensorType>();
if (attrType.getRank() != resultType.getRank()) {
return op.emitOpError(
"return type must match the one of the attached value "
"attribute: ")
<< attrType.getRank() << " != " << resultType.getRank();
}
// Check that each of the dimensions match between the two types.
for (int dim = 0, dimE = attrType.getRank(); dim < dimE; ++dim) {
if (attrType.getShape()[dim] != resultType.getShape()[dim]) {
return op.emitOpError(
"return type shape mismatches its attribute at dimension ")
<< dim << ": " << attrType.getShape()[dim]
<< " != " << resultType.getShape()[dim];
}
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// AddOp
void AddOp::build(mlir::Builder *builder, mlir::OperationState &state,
mlir::Value lhs, mlir::Value rhs) {
state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
state.addOperands({lhs, rhs});
}
/// Infer the output shape of the AddOp, this is required by the shape inference
/// interface.
void AddOp::inferShapes() { getResult().setType(getOperand(0).getType()); }
//===----------------------------------------------------------------------===//
// CastOp
/// Infer the output shape of the CastOp, this is required by the shape
/// inference interface.
void CastOp::inferShapes() { getResult().setType(getOperand().getType()); }
//===----------------------------------------------------------------------===//
// GenericCallOp
void GenericCallOp::build(mlir::Builder *builder, mlir::OperationState &state,
StringRef callee, ArrayRef<mlir::Value> arguments) {
// Generic call always returns an unranked Tensor initially.
state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
state.addOperands(arguments);
state.addAttribute("callee", builder->getSymbolRefAttr(callee));
}
/// Return the callee of the generic call operation, this is required by the
/// call interface.
CallInterfaceCallable GenericCallOp::getCallableForCallee() {
return getAttrOfType<SymbolRefAttr>("callee");
}
/// Get the argument operands to the called function, this is required by the
/// call interface.
Operation::operand_range GenericCallOp::getArgOperands() { return inputs(); }
//===----------------------------------------------------------------------===//
// MulOp
void MulOp::build(mlir::Builder *builder, mlir::OperationState &state,
mlir::Value lhs, mlir::Value rhs) {
state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
state.addOperands({lhs, rhs});
}
/// Infer the output shape of the MulOp, this is required by the shape inference
/// interface.
void MulOp::inferShapes() { getResult().setType(getOperand(0).getType()); }
//===----------------------------------------------------------------------===//
// ReturnOp
static mlir::LogicalResult verify(ReturnOp op) {
// We know that the parent operation is a function, because of the 'HasParent'
// trait attached to the operation definition.
auto function = cast<FuncOp>(op.getParentOp());
/// ReturnOps can only have a single optional operand.
if (op.getNumOperands() > 1)
return op.emitOpError() << "expects at most 1 return operand";
// The operand number and types must match the function signature.
const auto &results = function.getType().getResults();
if (op.getNumOperands() != results.size())
return op.emitOpError()
<< "does not return the same number of values ("
<< op.getNumOperands() << ") as the enclosing function ("
<< results.size() << ")";
// If the operation does not have an input, we are done.
if (!op.hasOperand())
return mlir::success();
auto inputType = *op.operand_type_begin();
auto resultType = results.front();
// Check that the result type of the function matches the operand type.
if (inputType == resultType || inputType.isa<mlir::UnrankedTensorType>() ||
resultType.isa<mlir::UnrankedTensorType>())
return mlir::success();
return op.emitError() << "type of return operand ("
<< *op.operand_type_begin()
<< ") doesn't match function result type ("
<< results.front() << ")";
}
//===----------------------------------------------------------------------===//
// TransposeOp
void TransposeOp::build(mlir::Builder *builder, mlir::OperationState &state,
mlir::Value value) {
state.addTypes(UnrankedTensorType::get(builder->getF64Type()));
state.addOperands(value);
}
void TransposeOp::inferShapes() {
auto arrayTy = getOperand().getType().cast<RankedTensorType>();
SmallVector<int64_t, 2> dims(llvm::reverse(arrayTy.getShape()));
getResult().setType(RankedTensorType::get(dims, arrayTy.getElementType()));
}
static mlir::LogicalResult verify(TransposeOp op) {
auto inputType = op.getOperand().getType().dyn_cast<RankedTensorType>();
auto resultType = op.getType().dyn_cast<RankedTensorType>();
if (!inputType || !resultType)
return mlir::success();
auto inputShape = inputType.getShape();
if (!std::equal(inputShape.begin(), inputShape.end(),
resultType.getShape().rbegin())) {
return op.emitError()
<< "expected result shape to be a transpose of the input";
}
return mlir::success();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "toy/Ops.cpp.inc"