bignumber.js 94.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/*! bignumber.js v4.1.0 https://github.com/MikeMcl/bignumber.js/LICENCE */

;(function (globalObj) {
    'use strict';

    /*
      bignumber.js v4.1.0
      A JavaScript library for arbitrary-precision arithmetic.
      https://github.com/MikeMcl/bignumber.js
      Copyright (c) 2017 Michael Mclaughlin <M8ch88l@gmail.com>
      MIT Expat Licence
    */


    var BigNumber,
        isNumeric = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i,
        mathceil = Math.ceil,
        mathfloor = Math.floor,
        notBool = ' not a boolean or binary digit',
        roundingMode = 'rounding mode',
        tooManyDigits = 'number type has more than 15 significant digits',
        ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_',
        BASE = 1e14,
        LOG_BASE = 14,
        MAX_SAFE_INTEGER = 0x1fffffffffffff,         // 2^53 - 1
        // MAX_INT32 = 0x7fffffff,                   // 2^31 - 1
        POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],
        SQRT_BASE = 1e7,

        /*
         * The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and
         * the arguments to toExponential, toFixed, toFormat, and toPrecision, beyond which an
         * exception is thrown (if ERRORS is true).
         */
        MAX = 1E9;                                   // 0 to MAX_INT32


    /*
     * Create and return a BigNumber constructor.
     */
    function constructorFactory(config) {
        var div, parseNumeric,

            // id tracks the caller function, so its name can be included in error messages.
            id = 0,
            P = BigNumber.prototype,
            ONE = new BigNumber(1),


            /********************************* EDITABLE DEFAULTS **********************************/


            /*
             * The default values below must be integers within the inclusive ranges stated.
             * The values can also be changed at run-time using BigNumber.config.
             */

            // The maximum number of decimal places for operations involving division.
            DECIMAL_PLACES = 20,                     // 0 to MAX

            /*
             * The rounding mode used when rounding to the above decimal places, and when using
             * toExponential, toFixed, toFormat and toPrecision, and round (default value).
             * UP         0 Away from zero.
             * DOWN       1 Towards zero.
             * CEIL       2 Towards +Infinity.
             * FLOOR      3 Towards -Infinity.
             * HALF_UP    4 Towards nearest neighbour. If equidistant, up.
             * HALF_DOWN  5 Towards nearest neighbour. If equidistant, down.
             * HALF_EVEN  6 Towards nearest neighbour. If equidistant, towards even neighbour.
             * HALF_CEIL  7 Towards nearest neighbour. If equidistant, towards +Infinity.
             * HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
             */
            ROUNDING_MODE = 4,                       // 0 to 8

            // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]

            // The exponent value at and beneath which toString returns exponential notation.
            // Number type: -7
            TO_EXP_NEG = -7,                         // 0 to -MAX

            // The exponent value at and above which toString returns exponential notation.
            // Number type: 21
            TO_EXP_POS = 21,                         // 0 to MAX

            // RANGE : [MIN_EXP, MAX_EXP]

            // The minimum exponent value, beneath which underflow to zero occurs.
            // Number type: -324  (5e-324)
            MIN_EXP = -1e7,                          // -1 to -MAX

            // The maximum exponent value, above which overflow to Infinity occurs.
            // Number type:  308  (1.7976931348623157e+308)
            // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.
            MAX_EXP = 1e7,                           // 1 to MAX

            // Whether BigNumber Errors are ever thrown.
            ERRORS = true,                           // true or false

            // Change to intValidatorNoErrors if ERRORS is false.
            isValidInt = intValidatorWithErrors,     // intValidatorWithErrors/intValidatorNoErrors

            // Whether to use cryptographically-secure random number generation, if available.
            CRYPTO = false,                          // true or false

            /*
             * The modulo mode used when calculating the modulus: a mod n.
             * The quotient (q = a / n) is calculated according to the corresponding rounding mode.
             * The remainder (r) is calculated as: r = a - n * q.
             *
             * UP        0 The remainder is positive if the dividend is negative, else is negative.
             * DOWN      1 The remainder has the same sign as the dividend.
             *             This modulo mode is commonly known as 'truncated division' and is
             *             equivalent to (a % n) in JavaScript.
             * FLOOR     3 The remainder has the same sign as the divisor (Python %).
             * HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
             * EUCLID    9 Euclidian division. q = sign(n) * floor(a / abs(n)).
             *             The remainder is always positive.
             *
             * The truncated division, floored division, Euclidian division and IEEE 754 remainder
             * modes are commonly used for the modulus operation.
             * Although the other rounding modes can also be used, they may not give useful results.
             */
            MODULO_MODE = 1,                         // 0 to 9

            // The maximum number of significant digits of the result of the toPower operation.
            // If POW_PRECISION is 0, there will be unlimited significant digits.
            POW_PRECISION = 0,                       // 0 to MAX

            // The format specification used by the BigNumber.prototype.toFormat method.
            FORMAT = {
                decimalSeparator: '.',
                groupSeparator: ',',
                groupSize: 3,
                secondaryGroupSize: 0,
                fractionGroupSeparator: '\xA0',      // non-breaking space
                fractionGroupSize: 0
            };


        /******************************************************************************************/


        // CONSTRUCTOR


        /*
         * The BigNumber constructor and exported function.
         * Create and return a new instance of a BigNumber object.
         *
         * n {number|string|BigNumber} A numeric value.
         * [b] {number} The base of n. Integer, 2 to 64 inclusive.
         */
        function BigNumber( n, b ) {
            var c, e, i, num, len, str,
                x = this;

            // Enable constructor usage without new.
            if ( !( x instanceof BigNumber ) ) {

                // 'BigNumber() constructor call without new: {n}'
                if (ERRORS) raise( 26, 'constructor call without new', n );
                return new BigNumber( n, b );
            }

            // 'new BigNumber() base not an integer: {b}'
            // 'new BigNumber() base out of range: {b}'
            if ( b == null || !isValidInt( b, 2, 64, id, 'base' ) ) {

                // Duplicate.
                if ( n instanceof BigNumber ) {
                    x.s = n.s;
                    x.e = n.e;
                    x.c = ( n = n.c ) ? n.slice() : n;
                    id = 0;
                    return;
                }

                if ( ( num = typeof n == 'number' ) && n * 0 == 0 ) {
                    x.s = 1 / n < 0 ? ( n = -n, -1 ) : 1;

                    // Fast path for integers.
                    if ( n === ~~n ) {
                        for ( e = 0, i = n; i >= 10; i /= 10, e++ );
                        x.e = e;
                        x.c = [n];
                        id = 0;
                        return;
                    }

                    str = n + '';
                } else {
                    if ( !isNumeric.test( str = n + '' ) ) return parseNumeric( x, str, num );
                    x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1;
                }
            } else {
                b = b | 0;
                str = n + '';

                // Ensure return value is rounded to DECIMAL_PLACES as with other bases.
                // Allow exponential notation to be used with base 10 argument.
                if ( b == 10 ) {
                    x = new BigNumber( n instanceof BigNumber ? n : str );
                    return round( x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE );
                }

                // Avoid potential interpretation of Infinity and NaN as base 44+ values.
                // Any number in exponential form will fail due to the [Ee][+-].
                if ( ( num = typeof n == 'number' ) && n * 0 != 0 ||
                  !( new RegExp( '^-?' + ( c = '[' + ALPHABET.slice( 0, b ) + ']+' ) +
                    '(?:\\.' + c + ')?$',b < 37 ? 'i' : '' ) ).test(str) ) {
                    return parseNumeric( x, str, num, b );
                }

                if (num) {
                    x.s = 1 / n < 0 ? ( str = str.slice(1), -1 ) : 1;

                    if ( ERRORS && str.replace( /^0\.0*|\./, '' ).length > 15 ) {

                        // 'new BigNumber() number type has more than 15 significant digits: {n}'
                        raise( id, tooManyDigits, n );
                    }

                    // Prevent later check for length on converted number.
                    num = false;
                } else {
                    x.s = str.charCodeAt(0) === 45 ? ( str = str.slice(1), -1 ) : 1;
                }

                str = convertBase( str, 10, b, x.s );
            }

            // Decimal point?
            if ( ( e = str.indexOf('.') ) > -1 ) str = str.replace( '.', '' );

            // Exponential form?
            if ( ( i = str.search( /e/i ) ) > 0 ) {

                // Determine exponent.
                if ( e < 0 ) e = i;
                e += +str.slice( i + 1 );
                str = str.substring( 0, i );
            } else if ( e < 0 ) {

                // Integer.
                e = str.length;
            }

            // Determine leading zeros.
            for ( i = 0; str.charCodeAt(i) === 48; i++ );

            // Determine trailing zeros.
            for ( len = str.length; str.charCodeAt(--len) === 48; );
            str = str.slice( i, len + 1 );

            if (str) {
                len = str.length;

                // Disallow numbers with over 15 significant digits if number type.
                // 'new BigNumber() number type has more than 15 significant digits: {n}'
                if ( num && ERRORS && len > 15 && ( n > MAX_SAFE_INTEGER || n !== mathfloor(n) ) ) {
                    raise( id, tooManyDigits, x.s * n );
                }

                e = e - i - 1;

                 // Overflow?
                if ( e > MAX_EXP ) {

                    // Infinity.
                    x.c = x.e = null;

                // Underflow?
                } else if ( e < MIN_EXP ) {

                    // Zero.
                    x.c = [ x.e = 0 ];
                } else {
                    x.e = e;
                    x.c = [];

                    // Transform base

                    // e is the base 10 exponent.
                    // i is where to slice str to get the first element of the coefficient array.
                    i = ( e + 1 ) % LOG_BASE;
                    if ( e < 0 ) i += LOG_BASE;

                    if ( i < len ) {
                        if (i) x.c.push( +str.slice( 0, i ) );

                        for ( len -= LOG_BASE; i < len; ) {
                            x.c.push( +str.slice( i, i += LOG_BASE ) );
                        }

                        str = str.slice(i);
                        i = LOG_BASE - str.length;
                    } else {
                        i -= len;
                    }

                    for ( ; i--; str += '0' );
                    x.c.push( +str );
                }
            } else {

                // Zero.
                x.c = [ x.e = 0 ];
            }

            id = 0;
        }


        // CONSTRUCTOR PROPERTIES


        BigNumber.another = constructorFactory;

        BigNumber.ROUND_UP = 0;
        BigNumber.ROUND_DOWN = 1;
        BigNumber.ROUND_CEIL = 2;
        BigNumber.ROUND_FLOOR = 3;
        BigNumber.ROUND_HALF_UP = 4;
        BigNumber.ROUND_HALF_DOWN = 5;
        BigNumber.ROUND_HALF_EVEN = 6;
        BigNumber.ROUND_HALF_CEIL = 7;
        BigNumber.ROUND_HALF_FLOOR = 8;
        BigNumber.EUCLID = 9;


        /*
         * Configure infrequently-changing library-wide settings.
         *
         * Accept an object or an argument list, with one or many of the following properties or
         * parameters respectively:
         *
         *   DECIMAL_PLACES  {number}  Integer, 0 to MAX inclusive
         *   ROUNDING_MODE   {number}  Integer, 0 to 8 inclusive
         *   EXPONENTIAL_AT  {number|number[]}  Integer, -MAX to MAX inclusive or
         *                                      [integer -MAX to 0 incl., 0 to MAX incl.]
         *   RANGE           {number|number[]}  Non-zero integer, -MAX to MAX inclusive or
         *                                      [integer -MAX to -1 incl., integer 1 to MAX incl.]
         *   ERRORS          {boolean|number}   true, false, 1 or 0
         *   CRYPTO          {boolean|number}   true, false, 1 or 0
         *   MODULO_MODE     {number}           0 to 9 inclusive
         *   POW_PRECISION   {number}           0 to MAX inclusive
         *   FORMAT          {object}           See BigNumber.prototype.toFormat
         *      decimalSeparator       {string}
         *      groupSeparator         {string}
         *      groupSize              {number}
         *      secondaryGroupSize     {number}
         *      fractionGroupSeparator {string}
         *      fractionGroupSize      {number}
         *
         * (The values assigned to the above FORMAT object properties are not checked for validity.)
         *
         * E.g.
         * BigNumber.config(20, 4) is equivalent to
         * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })
         *
         * Ignore properties/parameters set to null or undefined.
         * Return an object with the properties current values.
         */
        BigNumber.config = BigNumber.set = function () {
            var v, p,
                i = 0,
                r = {},
                a = arguments,
                o = a[0],
                has = o && typeof o == 'object'
                  ? function () { if ( o.hasOwnProperty(p) ) return ( v = o[p] ) != null; }
                  : function () { if ( a.length > i ) return ( v = a[i++] ) != null; };

            // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.
            // 'config() DECIMAL_PLACES not an integer: {v}'
            // 'config() DECIMAL_PLACES out of range: {v}'
            if ( has( p = 'DECIMAL_PLACES' ) && isValidInt( v, 0, MAX, 2, p ) ) {
                DECIMAL_PLACES = v | 0;
            }
            r[p] = DECIMAL_PLACES;

            // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.
            // 'config() ROUNDING_MODE not an integer: {v}'
            // 'config() ROUNDING_MODE out of range: {v}'
            if ( has( p = 'ROUNDING_MODE' ) && isValidInt( v, 0, 8, 2, p ) ) {
                ROUNDING_MODE = v | 0;
            }
            r[p] = ROUNDING_MODE;

            // EXPONENTIAL_AT {number|number[]}
            // Integer, -MAX to MAX inclusive or [integer -MAX to 0 inclusive, 0 to MAX inclusive].
            // 'config() EXPONENTIAL_AT not an integer: {v}'
            // 'config() EXPONENTIAL_AT out of range: {v}'
            if ( has( p = 'EXPONENTIAL_AT' ) ) {

                if ( isArray(v) ) {
                    if ( isValidInt( v[0], -MAX, 0, 2, p ) && isValidInt( v[1], 0, MAX, 2, p ) ) {
                        TO_EXP_NEG = v[0] | 0;
                        TO_EXP_POS = v[1] | 0;
                    }
                } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) {
                    TO_EXP_NEG = -( TO_EXP_POS = ( v < 0 ? -v : v ) | 0 );
                }
            }
            r[p] = [ TO_EXP_NEG, TO_EXP_POS ];

            // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
            // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].
            // 'config() RANGE not an integer: {v}'
            // 'config() RANGE cannot be zero: {v}'
            // 'config() RANGE out of range: {v}'
            if ( has( p = 'RANGE' ) ) {

                if ( isArray(v) ) {
                    if ( isValidInt( v[0], -MAX, -1, 2, p ) && isValidInt( v[1], 1, MAX, 2, p ) ) {
                        MIN_EXP = v[0] | 0;
                        MAX_EXP = v[1] | 0;
                    }
                } else if ( isValidInt( v, -MAX, MAX, 2, p ) ) {
                    if ( v | 0 ) MIN_EXP = -( MAX_EXP = ( v < 0 ? -v : v ) | 0 );
                    else if (ERRORS) raise( 2, p + ' cannot be zero', v );
                }
            }
            r[p] = [ MIN_EXP, MAX_EXP ];

            // ERRORS {boolean|number} true, false, 1 or 0.
            // 'config() ERRORS not a boolean or binary digit: {v}'
            if ( has( p = 'ERRORS' ) ) {

                if ( v === !!v || v === 1 || v === 0 ) {
                    id = 0;
                    isValidInt = ( ERRORS = !!v ) ? intValidatorWithErrors : intValidatorNoErrors;
                } else if (ERRORS) {
                    raise( 2, p + notBool, v );
                }
            }
            r[p] = ERRORS;

            // CRYPTO {boolean|number} true, false, 1 or 0.
            // 'config() CRYPTO not a boolean or binary digit: {v}'
            // 'config() crypto unavailable: {crypto}'
            if ( has( p = 'CRYPTO' ) ) {

                if ( v === true || v === false || v === 1 || v === 0 ) {
                    if (v) {
                        v = typeof crypto == 'undefined';
                        if ( !v && crypto && (crypto.getRandomValues || crypto.randomBytes)) {
                            CRYPTO = true;
                        } else if (ERRORS) {
                            raise( 2, 'crypto unavailable', v ? void 0 : crypto );
                        } else {
                            CRYPTO = false;
                        }
                    } else {
                        CRYPTO = false;
                    }
                } else if (ERRORS) {
                    raise( 2, p + notBool, v );
                }
            }
            r[p] = CRYPTO;

            // MODULO_MODE {number} Integer, 0 to 9 inclusive.
            // 'config() MODULO_MODE not an integer: {v}'
            // 'config() MODULO_MODE out of range: {v}'
            if ( has( p = 'MODULO_MODE' ) && isValidInt( v, 0, 9, 2, p ) ) {
                MODULO_MODE = v | 0;
            }
            r[p] = MODULO_MODE;

            // POW_PRECISION {number} Integer, 0 to MAX inclusive.
            // 'config() POW_PRECISION not an integer: {v}'
            // 'config() POW_PRECISION out of range: {v}'
            if ( has( p = 'POW_PRECISION' ) && isValidInt( v, 0, MAX, 2, p ) ) {
                POW_PRECISION = v | 0;
            }
            r[p] = POW_PRECISION;

            // FORMAT {object}
            // 'config() FORMAT not an object: {v}'
            if ( has( p = 'FORMAT' ) ) {

                if ( typeof v == 'object' ) {
                    FORMAT = v;
                } else if (ERRORS) {
                    raise( 2, p + ' not an object', v );
                }
            }
            r[p] = FORMAT;

            return r;
        };


        /*
         * Return a new BigNumber whose value is the maximum of the arguments.
         *
         * arguments {number|string|BigNumber}
         */
        BigNumber.max = function () { return maxOrMin( arguments, P.lt ); };


        /*
         * Return a new BigNumber whose value is the minimum of the arguments.
         *
         * arguments {number|string|BigNumber}
         */
        BigNumber.min = function () { return maxOrMin( arguments, P.gt ); };


        /*
         * Return a new BigNumber with a random value equal to or greater than 0 and less than 1,
         * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing
         * zeros are produced).
         *
         * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
         *
         * 'random() decimal places not an integer: {dp}'
         * 'random() decimal places out of range: {dp}'
         * 'random() crypto unavailable: {crypto}'
         */
        BigNumber.random = (function () {
            var pow2_53 = 0x20000000000000;

            // Return a 53 bit integer n, where 0 <= n < 9007199254740992.
            // Check if Math.random() produces more than 32 bits of randomness.
            // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.
            // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.
            var random53bitInt = (Math.random() * pow2_53) & 0x1fffff
              ? function () { return mathfloor( Math.random() * pow2_53 ); }
              : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +
                  (Math.random() * 0x800000 | 0); };

            return function (dp) {
                var a, b, e, k, v,
                    i = 0,
                    c = [],
                    rand = new BigNumber(ONE);

                dp = dp == null || !isValidInt( dp, 0, MAX, 14 ) ? DECIMAL_PLACES : dp | 0;
                k = mathceil( dp / LOG_BASE );

                if (CRYPTO) {

                    // Browsers supporting crypto.getRandomValues.
                    if (crypto.getRandomValues) {

                        a = crypto.getRandomValues( new Uint32Array( k *= 2 ) );

                        for ( ; i < k; ) {

                            // 53 bits:
                            // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)
                            // 11111 11111111 11111111 11111111 11100000 00000000 00000000
                            // ((Math.pow(2, 32) - 1) >>> 11).toString(2)
                            //                                     11111 11111111 11111111
                            // 0x20000 is 2^21.
                            v = a[i] * 0x20000 + (a[i + 1] >>> 11);

                            // Rejection sampling:
                            // 0 <= v < 9007199254740992
                            // Probability that v >= 9e15, is
                            // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251
                            if ( v >= 9e15 ) {
                                b = crypto.getRandomValues( new Uint32Array(2) );
                                a[i] = b[0];
                                a[i + 1] = b[1];
                            } else {

                                // 0 <= v <= 8999999999999999
                                // 0 <= (v % 1e14) <= 99999999999999
                                c.push( v % 1e14 );
                                i += 2;
                            }
                        }
                        i = k / 2;

                    // Node.js supporting crypto.randomBytes.
                    } else if (crypto.randomBytes) {

                        // buffer
                        a = crypto.randomBytes( k *= 7 );

                        for ( ; i < k; ) {

                            // 0x1000000000000 is 2^48, 0x10000000000 is 2^40
                            // 0x100000000 is 2^32, 0x1000000 is 2^24
                            // 11111 11111111 11111111 11111111 11111111 11111111 11111111
                            // 0 <= v < 9007199254740992
                            v = ( ( a[i] & 31 ) * 0x1000000000000 ) + ( a[i + 1] * 0x10000000000 ) +
                                  ( a[i + 2] * 0x100000000 ) + ( a[i + 3] * 0x1000000 ) +
                                  ( a[i + 4] << 16 ) + ( a[i + 5] << 8 ) + a[i + 6];

                            if ( v >= 9e15 ) {
                                crypto.randomBytes(7).copy( a, i );
                            } else {

                                // 0 <= (v % 1e14) <= 99999999999999
                                c.push( v % 1e14 );
                                i += 7;
                            }
                        }
                        i = k / 7;
                    } else {
                        CRYPTO = false;
                        if (ERRORS) raise( 14, 'crypto unavailable', crypto );
                    }
                }

                // Use Math.random.
                if (!CRYPTO) {

                    for ( ; i < k; ) {
                        v = random53bitInt();
                        if ( v < 9e15 ) c[i++] = v % 1e14;
                    }
                }

                k = c[--i];
                dp %= LOG_BASE;

                // Convert trailing digits to zeros according to dp.
                if ( k && dp ) {
                    v = POWS_TEN[LOG_BASE - dp];
                    c[i] = mathfloor( k / v ) * v;
                }

                // Remove trailing elements which are zero.
                for ( ; c[i] === 0; c.pop(), i-- );

                // Zero?
                if ( i < 0 ) {
                    c = [ e = 0 ];
                } else {

                    // Remove leading elements which are zero and adjust exponent accordingly.
                    for ( e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE);

                    // Count the digits of the first element of c to determine leading zeros, and...
                    for ( i = 1, v = c[0]; v >= 10; v /= 10, i++);

                    // adjust the exponent accordingly.
                    if ( i < LOG_BASE ) e -= LOG_BASE - i;
                }

                rand.e = e;
                rand.c = c;
                return rand;
            };
        })();


        // PRIVATE FUNCTIONS


        // Convert a numeric string of baseIn to a numeric string of baseOut.
        function convertBase( str, baseOut, baseIn, sign ) {
            var d, e, k, r, x, xc, y,
                i = str.indexOf( '.' ),
                dp = DECIMAL_PLACES,
                rm = ROUNDING_MODE;

            if ( baseIn < 37 ) str = str.toLowerCase();

            // Non-integer.
            if ( i >= 0 ) {
                k = POW_PRECISION;

                // Unlimited precision.
                POW_PRECISION = 0;
                str = str.replace( '.', '' );
                y = new BigNumber(baseIn);
                x = y.pow( str.length - i );
                POW_PRECISION = k;

                // Convert str as if an integer, then restore the fraction part by dividing the
                // result by its base raised to a power.
                y.c = toBaseOut( toFixedPoint( coeffToString( x.c ), x.e ), 10, baseOut );
                y.e = y.c.length;
            }

            // Convert the number as integer.
            xc = toBaseOut( str, baseIn, baseOut );
            e = k = xc.length;

            // Remove trailing zeros.
            for ( ; xc[--k] == 0; xc.pop() );
            if ( !xc[0] ) return '0';

            if ( i < 0 ) {
                --e;
            } else {
                x.c = xc;
                x.e = e;

                // sign is needed for correct rounding.
                x.s = sign;
                x = div( x, y, dp, rm, baseOut );
                xc = x.c;
                r = x.r;
                e = x.e;
            }

            d = e + dp + 1;

            // The rounding digit, i.e. the digit to the right of the digit that may be rounded up.
            i = xc[d];
            k = baseOut / 2;
            r = r || d < 0 || xc[d + 1] != null;

            r = rm < 4 ? ( i != null || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) )
                       : i > k || i == k &&( rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||
                         rm == ( x.s < 0 ? 8 : 7 ) );

            if ( d < 1 || !xc[0] ) {

                // 1^-dp or 0.
                str = r ? toFixedPoint( '1', -dp ) : '0';
            } else {
                xc.length = d;

                if (r) {

                    // Rounding up may mean the previous digit has to be rounded up and so on.
                    for ( --baseOut; ++xc[--d] > baseOut; ) {
                        xc[d] = 0;

                        if ( !d ) {
                            ++e;
                            xc = [1].concat(xc);
                        }
                    }
                }

                // Determine trailing zeros.
                for ( k = xc.length; !xc[--k]; );

                // E.g. [4, 11, 15] becomes 4bf.
                for ( i = 0, str = ''; i <= k; str += ALPHABET.charAt( xc[i++] ) );
                str = toFixedPoint( str, e );
            }

            // The caller will add the sign.
            return str;
        }


        // Perform division in the specified base. Called by div and convertBase.
        div = (function () {

            // Assume non-zero x and k.
            function multiply( x, k, base ) {
                var m, temp, xlo, xhi,
                    carry = 0,
                    i = x.length,
                    klo = k % SQRT_BASE,
                    khi = k / SQRT_BASE | 0;

                for ( x = x.slice(); i--; ) {
                    xlo = x[i] % SQRT_BASE;
                    xhi = x[i] / SQRT_BASE | 0;
                    m = khi * xlo + xhi * klo;
                    temp = klo * xlo + ( ( m % SQRT_BASE ) * SQRT_BASE ) + carry;
                    carry = ( temp / base | 0 ) + ( m / SQRT_BASE | 0 ) + khi * xhi;
                    x[i] = temp % base;
                }

                if (carry) x = [carry].concat(x);

                return x;
            }

            function compare( a, b, aL, bL ) {
                var i, cmp;

                if ( aL != bL ) {
                    cmp = aL > bL ? 1 : -1;
                } else {

                    for ( i = cmp = 0; i < aL; i++ ) {

                        if ( a[i] != b[i] ) {
                            cmp = a[i] > b[i] ? 1 : -1;
                            break;
                        }
                    }
                }
                return cmp;
            }

            function subtract( a, b, aL, base ) {
                var i = 0;

                // Subtract b from a.
                for ( ; aL--; ) {
                    a[aL] -= i;
                    i = a[aL] < b[aL] ? 1 : 0;
                    a[aL] = i * base + a[aL] - b[aL];
                }

                // Remove leading zeros.
                for ( ; !a[0] && a.length > 1; a.splice(0, 1) );
            }

            // x: dividend, y: divisor.
            return function ( x, y, dp, rm, base ) {
                var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,
                    yL, yz,
                    s = x.s == y.s ? 1 : -1,
                    xc = x.c,
                    yc = y.c;

                // Either NaN, Infinity or 0?
                if ( !xc || !xc[0] || !yc || !yc[0] ) {

                    return new BigNumber(

                      // Return NaN if either NaN, or both Infinity or 0.
                      !x.s || !y.s || ( xc ? yc && xc[0] == yc[0] : !yc ) ? NaN :

                        // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.
                        xc && xc[0] == 0 || !yc ? s * 0 : s / 0
                    );
                }

                q = new BigNumber(s);
                qc = q.c = [];
                e = x.e - y.e;
                s = dp + e + 1;

                if ( !base ) {
                    base = BASE;
                    e = bitFloor( x.e / LOG_BASE ) - bitFloor( y.e / LOG_BASE );
                    s = s / LOG_BASE | 0;
                }

                // Result exponent may be one less then the current value of e.
                // The coefficients of the BigNumbers from convertBase may have trailing zeros.
                for ( i = 0; yc[i] == ( xc[i] || 0 ); i++ );
                if ( yc[i] > ( xc[i] || 0 ) ) e--;

                if ( s < 0 ) {
                    qc.push(1);
                    more = true;
                } else {
                    xL = xc.length;
                    yL = yc.length;
                    i = 0;
                    s += 2;

                    // Normalise xc and yc so highest order digit of yc is >= base / 2.

                    n = mathfloor( base / ( yc[0] + 1 ) );

                    // Not necessary, but to handle odd bases where yc[0] == ( base / 2 ) - 1.
                    // if ( n > 1 || n++ == 1 && yc[0] < base / 2 ) {
                    if ( n > 1 ) {
                        yc = multiply( yc, n, base );
                        xc = multiply( xc, n, base );
                        yL = yc.length;
                        xL = xc.length;
                    }

                    xi = yL;
                    rem = xc.slice( 0, yL );
                    remL = rem.length;

                    // Add zeros to make remainder as long as divisor.
                    for ( ; remL < yL; rem[remL++] = 0 );
                    yz = yc.slice();
                    yz = [0].concat(yz);
                    yc0 = yc[0];
                    if ( yc[1] >= base / 2 ) yc0++;
                    // Not necessary, but to prevent trial digit n > base, when using base 3.
                    // else if ( base == 3 && yc0 == 1 ) yc0 = 1 + 1e-15;

                    do {
                        n = 0;

                        // Compare divisor and remainder.
                        cmp = compare( yc, rem, yL, remL );

                        // If divisor < remainder.
                        if ( cmp < 0 ) {

                            // Calculate trial digit, n.

                            rem0 = rem[0];
                            if ( yL != remL ) rem0 = rem0 * base + ( rem[1] || 0 );

                            // n is how many times the divisor goes into the current remainder.
                            n = mathfloor( rem0 / yc0 );

                            //  Algorithm:
                            //  1. product = divisor * trial digit (n)
                            //  2. if product > remainder: product -= divisor, n--
                            //  3. remainder -= product
                            //  4. if product was < remainder at 2:
                            //    5. compare new remainder and divisor
                            //    6. If remainder > divisor: remainder -= divisor, n++

                            if ( n > 1 ) {

                                // n may be > base only when base is 3.
                                if (n >= base) n = base - 1;

                                // product = divisor * trial digit.
                                prod = multiply( yc, n, base );
                                prodL = prod.length;
                                remL = rem.length;

                                // Compare product and remainder.
                                // If product > remainder.
                                // Trial digit n too high.
                                // n is 1 too high about 5% of the time, and is not known to have
                                // ever been more than 1 too high.
                                while ( compare( prod, rem, prodL, remL ) == 1 ) {
                                    n--;

                                    // Subtract divisor from product.
                                    subtract( prod, yL < prodL ? yz : yc, prodL, base );
                                    prodL = prod.length;
                                    cmp = 1;
                                }
                            } else {

                                // n is 0 or 1, cmp is -1.
                                // If n is 0, there is no need to compare yc and rem again below,
                                // so change cmp to 1 to avoid it.
                                // If n is 1, leave cmp as -1, so yc and rem are compared again.
                                if ( n == 0 ) {

                                    // divisor < remainder, so n must be at least 1.
                                    cmp = n = 1;
                                }

                                // product = divisor
                                prod = yc.slice();
                                prodL = prod.length;
                            }

                            if ( prodL < remL ) prod = [0].concat(prod);

                            // Subtract product from remainder.
                            subtract( rem, prod, remL, base );
                            remL = rem.length;

                             // If product was < remainder.
                            if ( cmp == -1 ) {

                                // Compare divisor and new remainder.
                                // If divisor < new remainder, subtract divisor from remainder.
                                // Trial digit n too low.
                                // n is 1 too low about 5% of the time, and very rarely 2 too low.
                                while ( compare( yc, rem, yL, remL ) < 1 ) {
                                    n++;

                                    // Subtract divisor from remainder.
                                    subtract( rem, yL < remL ? yz : yc, remL, base );
                                    remL = rem.length;
                                }
                            }
                        } else if ( cmp === 0 ) {
                            n++;
                            rem = [0];
                        } // else cmp === 1 and n will be 0

                        // Add the next digit, n, to the result array.
                        qc[i++] = n;

                        // Update the remainder.
                        if ( rem[0] ) {
                            rem[remL++] = xc[xi] || 0;
                        } else {
                            rem = [ xc[xi] ];
                            remL = 1;
                        }
                    } while ( ( xi++ < xL || rem[0] != null ) && s-- );

                    more = rem[0] != null;

                    // Leading zero?
                    if ( !qc[0] ) qc.splice(0, 1);
                }

                if ( base == BASE ) {

                    // To calculate q.e, first get the number of digits of qc[0].
                    for ( i = 1, s = qc[0]; s >= 10; s /= 10, i++ );
                    round( q, dp + ( q.e = i + e * LOG_BASE - 1 ) + 1, rm, more );

                // Caller is convertBase.
                } else {
                    q.e = e;
                    q.r = +more;
                }

                return q;
            };
        })();


        /*
         * Return a string representing the value of BigNumber n in fixed-point or exponential
         * notation rounded to the specified decimal places or significant digits.
         *
         * n is a BigNumber.
         * i is the index of the last digit required (i.e. the digit that may be rounded up).
         * rm is the rounding mode.
         * caller is caller id: toExponential 19, toFixed 20, toFormat 21, toPrecision 24.
         */
        function format( n, i, rm, caller ) {
            var c0, e, ne, len, str;

            rm = rm != null && isValidInt( rm, 0, 8, caller, roundingMode )
              ? rm | 0 : ROUNDING_MODE;

            if ( !n.c ) return n.toString();
            c0 = n.c[0];
            ne = n.e;

            if ( i == null ) {
                str = coeffToString( n.c );
                str = caller == 19 || caller == 24 && ne <= TO_EXP_NEG
                  ? toExponential( str, ne )
                  : toFixedPoint( str, ne );
            } else {
                n = round( new BigNumber(n), i, rm );

                // n.e may have changed if the value was rounded up.
                e = n.e;

                str = coeffToString( n.c );
                len = str.length;

                // toPrecision returns exponential notation if the number of significant digits
                // specified is less than the number of digits necessary to represent the integer
                // part of the value in fixed-point notation.

                // Exponential notation.
                if ( caller == 19 || caller == 24 && ( i <= e || e <= TO_EXP_NEG ) ) {

                    // Append zeros?
                    for ( ; len < i; str += '0', len++ );
                    str = toExponential( str, e );

                // Fixed-point notation.
                } else {
                    i -= ne;
                    str = toFixedPoint( str, e );

                    // Append zeros?
                    if ( e + 1 > len ) {
                        if ( --i > 0 ) for ( str += '.'; i--; str += '0' );
                    } else {
                        i += e - len;
                        if ( i > 0 ) {
                            if ( e + 1 == len ) str += '.';
                            for ( ; i--; str += '0' );
                        }
                    }
                }
            }

            return n.s < 0 && c0 ? '-' + str : str;
        }


        // Handle BigNumber.max and BigNumber.min.
        function maxOrMin( args, method ) {
            var m, n,
                i = 0;

            if ( isArray( args[0] ) ) args = args[0];
            m = new BigNumber( args[0] );

            for ( ; ++i < args.length; ) {
                n = new BigNumber( args[i] );

                // If any number is NaN, return NaN.
                if ( !n.s ) {
                    m = n;
                    break;
                } else if ( method.call( m, n ) ) {
                    m = n;
                }
            }

            return m;
        }


        /*
         * Return true if n is an integer in range, otherwise throw.
         * Use for argument validation when ERRORS is true.
         */
        function intValidatorWithErrors( n, min, max, caller, name ) {
            if ( n < min || n > max || n != truncate(n) ) {
                raise( caller, ( name || 'decimal places' ) +
                  ( n < min || n > max ? ' out of range' : ' not an integer' ), n );
            }

            return true;
        }


        /*
         * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.
         * Called by minus, plus and times.
         */
        function normalise( n, c, e ) {
            var i = 1,
                j = c.length;

             // Remove trailing zeros.
            for ( ; !c[--j]; c.pop() );

            // Calculate the base 10 exponent. First get the number of digits of c[0].
            for ( j = c[0]; j >= 10; j /= 10, i++ );

            // Overflow?
            if ( ( e = i + e * LOG_BASE - 1 ) > MAX_EXP ) {

                // Infinity.
                n.c = n.e = null;

            // Underflow?
            } else if ( e < MIN_EXP ) {

                // Zero.
                n.c = [ n.e = 0 ];
            } else {
                n.e = e;
                n.c = c;
            }

            return n;
        }


        // Handle values that fail the validity test in BigNumber.
        parseNumeric = (function () {
            var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i,
                dotAfter = /^([^.]+)\.$/,
                dotBefore = /^\.([^.]+)$/,
                isInfinityOrNaN = /^-?(Infinity|NaN)$/,
                whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g;

            return function ( x, str, num, b ) {
                var base,
                    s = num ? str : str.replace( whitespaceOrPlus, '' );

                // No exception on ±Infinity or NaN.
                if ( isInfinityOrNaN.test(s) ) {
                    x.s = isNaN(s) ? null : s < 0 ? -1 : 1;
                } else {
                    if ( !num ) {

                        // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i
                        s = s.replace( basePrefix, function ( m, p1, p2 ) {
                            base = ( p2 = p2.toLowerCase() ) == 'x' ? 16 : p2 == 'b' ? 2 : 8;
                            return !b || b == base ? p1 : m;
                        });

                        if (b) {
                            base = b;

                            // E.g. '1.' to '1', '.1' to '0.1'
                            s = s.replace( dotAfter, '$1' ).replace( dotBefore, '0.$1' );
                        }

                        if ( str != s ) return new BigNumber( s, base );
                    }

                    // 'new BigNumber() not a number: {n}'
                    // 'new BigNumber() not a base {b} number: {n}'
                    if (ERRORS) raise( id, 'not a' + ( b ? ' base ' + b : '' ) + ' number', str );
                    x.s = null;
                }

                x.c = x.e = null;
                id = 0;
            }
        })();


        // Throw a BigNumber Error.
        function raise( caller, msg, val ) {
            var error = new Error( [
                'new BigNumber',     // 0
                'cmp',               // 1
                'config',            // 2
                'div',               // 3
                'divToInt',          // 4
                'eq',                // 5
                'gt',                // 6
                'gte',               // 7
                'lt',                // 8
                'lte',               // 9
                'minus',             // 10
                'mod',               // 11
                'plus',              // 12
                'precision',         // 13
                'random',            // 14
                'round',             // 15
                'shift',             // 16
                'times',             // 17
                'toDigits',          // 18
                'toExponential',     // 19
                'toFixed',           // 20
                'toFormat',          // 21
                'toFraction',        // 22
                'pow',               // 23
                'toPrecision',       // 24
                'toString',          // 25
                'BigNumber'          // 26
            ][caller] + '() ' + msg + ': ' + val );

            error.name = 'BigNumber Error';
            id = 0;
            throw error;
        }


        /*
         * Round x to sd significant digits using rounding mode rm. Check for over/under-flow.
         * If r is truthy, it is known that there are more digits after the rounding digit.
         */
        function round( x, sd, rm, r ) {
            var d, i, j, k, n, ni, rd,
                xc = x.c,
                pows10 = POWS_TEN;

            // if x is not Infinity or NaN...
            if (xc) {

                // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.
                // n is a base 1e14 number, the value of the element of array x.c containing rd.
                // ni is the index of n within x.c.
                // d is the number of digits of n.
                // i is the index of rd within n including leading zeros.
                // j is the actual index of rd within n (if < 0, rd is a leading zero).
                out: {

                    // Get the number of digits of the first element of xc.
                    for ( d = 1, k = xc[0]; k >= 10; k /= 10, d++ );
                    i = sd - d;

                    // If the rounding digit is in the first element of xc...
                    if ( i < 0 ) {
                        i += LOG_BASE;
                        j = sd;
                        n = xc[ ni = 0 ];

                        // Get the rounding digit at index j of n.
                        rd = n / pows10[ d - j - 1 ] % 10 | 0;
                    } else {
                        ni = mathceil( ( i + 1 ) / LOG_BASE );

                        if ( ni >= xc.length ) {

                            if (r) {

                                // Needed by sqrt.
                                for ( ; xc.length <= ni; xc.push(0) );
                                n = rd = 0;
                                d = 1;
                                i %= LOG_BASE;
                                j = i - LOG_BASE + 1;
                            } else {
                                break out;
                            }
                        } else {
                            n = k = xc[ni];

                            // Get the number of digits of n.
                            for ( d = 1; k >= 10; k /= 10, d++ );

                            // Get the index of rd within n.
                            i %= LOG_BASE;

                            // Get the index of rd within n, adjusted for leading zeros.
                            // The number of leading zeros of n is given by LOG_BASE - d.
                            j = i - LOG_BASE + d;

                            // Get the rounding digit at index j of n.
                            rd = j < 0 ? 0 : n / pows10[ d - j - 1 ] % 10 | 0;
                        }
                    }

                    r = r || sd < 0 ||

                    // Are there any non-zero digits after the rounding digit?
                    // The expression  n % pows10[ d - j - 1 ]  returns all digits of n to the right
                    // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.
                      xc[ni + 1] != null || ( j < 0 ? n : n % pows10[ d - j - 1 ] );

                    r = rm < 4
                      ? ( rd || r ) && ( rm == 0 || rm == ( x.s < 0 ? 3 : 2 ) )
                      : rd > 5 || rd == 5 && ( rm == 4 || r || rm == 6 &&

                        // Check whether the digit to the left of the rounding digit is odd.
                        ( ( i > 0 ? j > 0 ? n / pows10[ d - j ] : 0 : xc[ni - 1] ) % 10 ) & 1 ||
                          rm == ( x.s < 0 ? 8 : 7 ) );

                    if ( sd < 1 || !xc[0] ) {
                        xc.length = 0;

                        if (r) {

                            // Convert sd to decimal places.
                            sd -= x.e + 1;

                            // 1, 0.1, 0.01, 0.001, 0.0001 etc.
                            xc[0] = pows10[ ( LOG_BASE - sd % LOG_BASE ) % LOG_BASE ];
                            x.e = -sd || 0;
                        } else {

                            // Zero.
                            xc[0] = x.e = 0;
                        }

                        return x;
                    }

                    // Remove excess digits.
                    if ( i == 0 ) {
                        xc.length = ni;
                        k = 1;
                        ni--;
                    } else {
                        xc.length = ni + 1;
                        k = pows10[ LOG_BASE - i ];

                        // E.g. 56700 becomes 56000 if 7 is the rounding digit.
                        // j > 0 means i > number of leading zeros of n.
                        xc[ni] = j > 0 ? mathfloor( n / pows10[ d - j ] % pows10[j] ) * k : 0;
                    }

                    // Round up?
                    if (r) {

                        for ( ; ; ) {

                            // If the digit to be rounded up is in the first element of xc...
                            if ( ni == 0 ) {

                                // i will be the length of xc[0] before k is added.
                                for ( i = 1, j = xc[0]; j >= 10; j /= 10, i++ );
                                j = xc[0] += k;
                                for ( k = 1; j >= 10; j /= 10, k++ );

                                // if i != k the length has increased.
                                if ( i != k ) {
                                    x.e++;
                                    if ( xc[0] == BASE ) xc[0] = 1;
                                }

                                break;
                            } else {
                                xc[ni] += k;
                                if ( xc[ni] != BASE ) break;
                                xc[ni--] = 0;
                                k = 1;
                            }
                        }
                    }

                    // Remove trailing zeros.
                    for ( i = xc.length; xc[--i] === 0; xc.pop() );
                }

                // Overflow? Infinity.
                if ( x.e > MAX_EXP ) {
                    x.c = x.e = null;

                // Underflow? Zero.
                } else if ( x.e < MIN_EXP ) {
                    x.c = [ x.e = 0 ];
                }
            }

            return x;
        }


        // PROTOTYPE/INSTANCE METHODS


        /*
         * Return a new BigNumber whose value is the absolute value of this BigNumber.
         */
        P.absoluteValue = P.abs = function () {
            var x = new BigNumber(this);
            if ( x.s < 0 ) x.s = 1;
            return x;
        };


        /*
         * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole
         * number in the direction of Infinity.
         */
        P.ceil = function () {
            return round( new BigNumber(this), this.e + 1, 2 );
        };


        /*
         * Return
         * 1 if the value of this BigNumber is greater than the value of BigNumber(y, b),
         * -1 if the value of this BigNumber is less than the value of BigNumber(y, b),
         * 0 if they have the same value,
         * or null if the value of either is NaN.
         */
        P.comparedTo = P.cmp = function ( y, b ) {
            id = 1;
            return compare( this, new BigNumber( y, b ) );
        };


        /*
         * Return the number of decimal places of the value of this BigNumber, or null if the value
         * of this BigNumber is ±Infinity or NaN.
         */
        P.decimalPlaces = P.dp = function () {
            var n, v,
                c = this.c;

            if ( !c ) return null;
            n = ( ( v = c.length - 1 ) - bitFloor( this.e / LOG_BASE ) ) * LOG_BASE;

            // Subtract the number of trailing zeros of the last number.
            if ( v = c[v] ) for ( ; v % 10 == 0; v /= 10, n-- );
            if ( n < 0 ) n = 0;

            return n;
        };


        /*
         *  n / 0 = I
         *  n / N = N
         *  n / I = 0
         *  0 / n = 0
         *  0 / 0 = N
         *  0 / N = N
         *  0 / I = 0
         *  N / n = N
         *  N / 0 = N
         *  N / N = N
         *  N / I = N
         *  I / n = I
         *  I / 0 = I
         *  I / N = N
         *  I / I = N
         *
         * Return a new BigNumber whose value is the value of this BigNumber divided by the value of
         * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE.
         */
        P.dividedBy = P.div = function ( y, b ) {
            id = 3;
            return div( this, new BigNumber( y, b ), DECIMAL_PLACES, ROUNDING_MODE );
        };


        /*
         * Return a new BigNumber whose value is the integer part of dividing the value of this
         * BigNumber by the value of BigNumber(y, b).
         */
        P.dividedToIntegerBy = P.divToInt = function ( y, b ) {
            id = 4;
            return div( this, new BigNumber( y, b ), 0, 1 );
        };


        /*
         * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b),
         * otherwise returns false.
         */
        P.equals = P.eq = function ( y, b ) {
            id = 5;
            return compare( this, new BigNumber( y, b ) ) === 0;
        };


        /*
         * Return a new BigNumber whose value is the value of this BigNumber rounded to a whole
         * number in the direction of -Infinity.
         */
        P.floor = function () {
            return round( new BigNumber(this), this.e + 1, 3 );
        };


        /*
         * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b),
         * otherwise returns false.
         */
        P.greaterThan = P.gt = function ( y, b ) {
            id = 6;
            return compare( this, new BigNumber( y, b ) ) > 0;
        };


        /*
         * Return true if the value of this BigNumber is greater than or equal to the value of
         * BigNumber(y, b), otherwise returns false.
         */
        P.greaterThanOrEqualTo = P.gte = function ( y, b ) {
            id = 7;
            return ( b = compare( this, new BigNumber( y, b ) ) ) === 1 || b === 0;

        };


        /*
         * Return true if the value of this BigNumber is a finite number, otherwise returns false.
         */
        P.isFinite = function () {
            return !!this.c;
        };


        /*
         * Return true if the value of this BigNumber is an integer, otherwise return false.
         */
        P.isInteger = P.isInt = function () {
            return !!this.c && bitFloor( this.e / LOG_BASE ) > this.c.length - 2;
        };


        /*
         * Return true if the value of this BigNumber is NaN, otherwise returns false.
         */
        P.isNaN = function () {
            return !this.s;
        };


        /*
         * Return true if the value of this BigNumber is negative, otherwise returns false.
         */
        P.isNegative = P.isNeg = function () {
            return this.s < 0;
        };


        /*
         * Return true if the value of this BigNumber is 0 or -0, otherwise returns false.
         */
        P.isZero = function () {
            return !!this.c && this.c[0] == 0;
        };


        /*
         * Return true if the value of this BigNumber is less than the value of BigNumber(y, b),
         * otherwise returns false.
         */
        P.lessThan = P.lt = function ( y, b ) {
            id = 8;
            return compare( this, new BigNumber( y, b ) ) < 0;
        };


        /*
         * Return true if the value of this BigNumber is less than or equal to the value of
         * BigNumber(y, b), otherwise returns false.
         */
        P.lessThanOrEqualTo = P.lte = function ( y, b ) {
            id = 9;
            return ( b = compare( this, new BigNumber( y, b ) ) ) === -1 || b === 0;
        };


        /*
         *  n - 0 = n
         *  n - N = N
         *  n - I = -I
         *  0 - n = -n
         *  0 - 0 = 0
         *  0 - N = N
         *  0 - I = -I
         *  N - n = N
         *  N - 0 = N
         *  N - N = N
         *  N - I = N
         *  I - n = I
         *  I - 0 = I
         *  I - N = N
         *  I - I = N
         *
         * Return a new BigNumber whose value is the value of this BigNumber minus the value of
         * BigNumber(y, b).
         */
        P.minus = P.sub = function ( y, b ) {
            var i, j, t, xLTy,
                x = this,
                a = x.s;

            id = 10;
            y = new BigNumber( y, b );
            b = y.s;

            // Either NaN?
            if ( !a || !b ) return new BigNumber(NaN);

            // Signs differ?
            if ( a != b ) {
                y.s = -b;
                return x.plus(y);
            }

            var xe = x.e / LOG_BASE,
                ye = y.e / LOG_BASE,
                xc = x.c,
                yc = y.c;

            if ( !xe || !ye ) {

                // Either Infinity?
                if ( !xc || !yc ) return xc ? ( y.s = -b, y ) : new BigNumber( yc ? x : NaN );

                // Either zero?
                if ( !xc[0] || !yc[0] ) {

                    // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
                    return yc[0] ? ( y.s = -b, y ) : new BigNumber( xc[0] ? x :

                      // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
                      ROUNDING_MODE == 3 ? -0 : 0 );
                }
            }

            xe = bitFloor(xe);
            ye = bitFloor(ye);
            xc = xc.slice();

            // Determine which is the bigger number.
            if ( a = xe - ye ) {

                if ( xLTy = a < 0 ) {
                    a = -a;
                    t = xc;
                } else {
                    ye = xe;
                    t = yc;
                }

                t.reverse();

                // Prepend zeros to equalise exponents.
                for ( b = a; b--; t.push(0) );
                t.reverse();
            } else {

                // Exponents equal. Check digit by digit.
                j = ( xLTy = ( a = xc.length ) < ( b = yc.length ) ) ? a : b;

                for ( a = b = 0; b < j; b++ ) {

                    if ( xc[b] != yc[b] ) {
                        xLTy = xc[b] < yc[b];
                        break;
                    }
                }
            }

            // x < y? Point xc to the array of the bigger number.
            if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s;

            b = ( j = yc.length ) - ( i = xc.length );

            // Append zeros to xc if shorter.
            // No need to add zeros to yc if shorter as subtract only needs to start at yc.length.
            if ( b > 0 ) for ( ; b--; xc[i++] = 0 );
            b = BASE - 1;

            // Subtract yc from xc.
            for ( ; j > a; ) {

                if ( xc[--j] < yc[j] ) {
                    for ( i = j; i && !xc[--i]; xc[i] = b );
                    --xc[i];
                    xc[j] += BASE;
                }

                xc[j] -= yc[j];
            }

            // Remove leading zeros and adjust exponent accordingly.
            for ( ; xc[0] == 0; xc.splice(0, 1), --ye );

            // Zero?
            if ( !xc[0] ) {

                // Following IEEE 754 (2008) 6.3,
                // n - n = +0  but  n - n = -0  when rounding towards -Infinity.
                y.s = ROUNDING_MODE == 3 ? -1 : 1;
                y.c = [ y.e = 0 ];
                return y;
            }

            // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity
            // for finite x and y.
            return normalise( y, xc, ye );
        };


        /*
         *   n % 0 =  N
         *   n % N =  N
         *   n % I =  n
         *   0 % n =  0
         *  -0 % n = -0
         *   0 % 0 =  N
         *   0 % N =  N
         *   0 % I =  0
         *   N % n =  N
         *   N % 0 =  N
         *   N % N =  N
         *   N % I =  N
         *   I % n =  N
         *   I % 0 =  N
         *   I % N =  N
         *   I % I =  N
         *
         * Return a new BigNumber whose value is the value of this BigNumber modulo the value of
         * BigNumber(y, b). The result depends on the value of MODULO_MODE.
         */
        P.modulo = P.mod = function ( y, b ) {
            var q, s,
                x = this;

            id = 11;
            y = new BigNumber( y, b );

            // Return NaN if x is Infinity or NaN, or y is NaN or zero.
            if ( !x.c || !y.s || y.c && !y.c[0] ) {
                return new BigNumber(NaN);

            // Return x if y is Infinity or x is zero.
            } else if ( !y.c || x.c && !x.c[0] ) {
                return new BigNumber(x);
            }

            if ( MODULO_MODE == 9 ) {

                // Euclidian division: q = sign(y) * floor(x / abs(y))
                // r = x - qy    where  0 <= r < abs(y)
                s = y.s;
                y.s = 1;
                q = div( x, y, 0, 3 );
                y.s = s;
                q.s *= s;
            } else {
                q = div( x, y, 0, MODULO_MODE );
            }

            return x.minus( q.times(y) );
        };


        /*
         * Return a new BigNumber whose value is the value of this BigNumber negated,
         * i.e. multiplied by -1.
         */
        P.negated = P.neg = function () {
            var x = new BigNumber(this);
            x.s = -x.s || null;
            return x;
        };


        /*
         *  n + 0 = n
         *  n + N = N
         *  n + I = I
         *  0 + n = n
         *  0 + 0 = 0
         *  0 + N = N
         *  0 + I = I
         *  N + n = N
         *  N + 0 = N
         *  N + N = N
         *  N + I = N
         *  I + n = I
         *  I + 0 = I
         *  I + N = N
         *  I + I = I
         *
         * Return a new BigNumber whose value is the value of this BigNumber plus the value of
         * BigNumber(y, b).
         */
        P.plus = P.add = function ( y, b ) {
            var t,
                x = this,
                a = x.s;

            id = 12;
            y = new BigNumber( y, b );
            b = y.s;

            // Either NaN?
            if ( !a || !b ) return new BigNumber(NaN);

            // Signs differ?
             if ( a != b ) {
                y.s = -b;
                return x.minus(y);
            }

            var xe = x.e / LOG_BASE,
                ye = y.e / LOG_BASE,
                xc = x.c,
                yc = y.c;

            if ( !xe || !ye ) {

                // Return ±Infinity if either ±Infinity.
                if ( !xc || !yc ) return new BigNumber( a / 0 );

                // Either zero?
                // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
                if ( !xc[0] || !yc[0] ) return yc[0] ? y : new BigNumber( xc[0] ? x : a * 0 );
            }

            xe = bitFloor(xe);
            ye = bitFloor(ye);
            xc = xc.slice();

            // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.
            if ( a = xe - ye ) {
                if ( a > 0 ) {
                    ye = xe;
                    t = yc;
                } else {
                    a = -a;
                    t = xc;
                }

                t.reverse();
                for ( ; a--; t.push(0) );
                t.reverse();
            }

            a = xc.length;
            b = yc.length;

            // Point xc to the longer array, and b to the shorter length.
            if ( a - b < 0 ) t = yc, yc = xc, xc = t, b = a;

            // Only start adding at yc.length - 1 as the further digits of xc can be ignored.
            for ( a = 0; b; ) {
                a = ( xc[--b] = xc[b] + yc[b] + a ) / BASE | 0;
                xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE;
            }

            if (a) {
                xc = [a].concat(xc);
                ++ye;
            }

            // No need to check for zero, as +x + +y != 0 && -x + -y != 0
            // ye = MAX_EXP + 1 possible
            return normalise( y, xc, ye );
        };


        /*
         * Return the number of significant digits of the value of this BigNumber.
         *
         * [z] {boolean|number} Whether to count integer-part trailing zeros: true, false, 1 or 0.
         */
        P.precision = P.sd = function (z) {
            var n, v,
                x = this,
                c = x.c;

            // 'precision() argument not a boolean or binary digit: {z}'
            if ( z != null && z !== !!z && z !== 1 && z !== 0 ) {
                if (ERRORS) raise( 13, 'argument' + notBool, z );
                if ( z != !!z ) z = null;
            }

            if ( !c ) return null;
            v = c.length - 1;
            n = v * LOG_BASE + 1;

            if ( v = c[v] ) {

                // Subtract the number of trailing zeros of the last element.
                for ( ; v % 10 == 0; v /= 10, n-- );

                // Add the number of digits of the first element.
                for ( v = c[0]; v >= 10; v /= 10, n++ );
            }

            if ( z && x.e + 1 > n ) n = x.e + 1;

            return n;
        };


        /*
         * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of
         * dp decimal places using rounding mode rm, or to 0 and ROUNDING_MODE respectively if
         * omitted.
         *
         * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
         * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
         *
         * 'round() decimal places out of range: {dp}'
         * 'round() decimal places not an integer: {dp}'
         * 'round() rounding mode not an integer: {rm}'
         * 'round() rounding mode out of range: {rm}'
         */
        P.round = function ( dp, rm ) {
            var n = new BigNumber(this);

            if ( dp == null || isValidInt( dp, 0, MAX, 15 ) ) {
                round( n, ~~dp + this.e + 1, rm == null ||
                  !isValidInt( rm, 0, 8, 15, roundingMode ) ? ROUNDING_MODE : rm | 0 );
            }

            return n;
        };


        /*
         * Return a new BigNumber whose value is the value of this BigNumber shifted by k places
         * (powers of 10). Shift to the right if n > 0, and to the left if n < 0.
         *
         * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
         *
         * If k is out of range and ERRORS is false, the result will be ±0 if k < 0, or ±Infinity
         * otherwise.
         *
         * 'shift() argument not an integer: {k}'
         * 'shift() argument out of range: {k}'
         */
        P.shift = function (k) {
            var n = this;
            return isValidInt( k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 16, 'argument' )

              // k < 1e+21, or truncate(k) will produce exponential notation.
              ? n.times( '1e' + truncate(k) )
              : new BigNumber( n.c && n.c[0] && ( k < -MAX_SAFE_INTEGER || k > MAX_SAFE_INTEGER )
                ? n.s * ( k < 0 ? 0 : 1 / 0 )
                : n );
        };


        /*
         *  sqrt(-n) =  N
         *  sqrt( N) =  N
         *  sqrt(-I) =  N
         *  sqrt( I) =  I
         *  sqrt( 0) =  0
         *  sqrt(-0) = -0
         *
         * Return a new BigNumber whose value is the square root of the value of this BigNumber,
         * rounded according to DECIMAL_PLACES and ROUNDING_MODE.
         */
        P.squareRoot = P.sqrt = function () {
            var m, n, r, rep, t,
                x = this,
                c = x.c,
                s = x.s,
                e = x.e,
                dp = DECIMAL_PLACES + 4,
                half = new BigNumber('0.5');

            // Negative/NaN/Infinity/zero?
            if ( s !== 1 || !c || !c[0] ) {
                return new BigNumber( !s || s < 0 && ( !c || c[0] ) ? NaN : c ? x : 1 / 0 );
            }

            // Initial estimate.
            s = Math.sqrt( +x );

            // Math.sqrt underflow/overflow?
            // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
            if ( s == 0 || s == 1 / 0 ) {
                n = coeffToString(c);
                if ( ( n.length + e ) % 2 == 0 ) n += '0';
                s = Math.sqrt(n);
                e = bitFloor( ( e + 1 ) / 2 ) - ( e < 0 || e % 2 );

                if ( s == 1 / 0 ) {
                    n = '1e' + e;
                } else {
                    n = s.toExponential();
                    n = n.slice( 0, n.indexOf('e') + 1 ) + e;
                }

                r = new BigNumber(n);
            } else {
                r = new BigNumber( s + '' );
            }

            // Check for zero.
            // r could be zero if MIN_EXP is changed after the this value was created.
            // This would cause a division by zero (x/t) and hence Infinity below, which would cause
            // coeffToString to throw.
            if ( r.c[0] ) {
                e = r.e;
                s = e + dp;
                if ( s < 3 ) s = 0;

                // Newton-Raphson iteration.
                for ( ; ; ) {
                    t = r;
                    r = half.times( t.plus( div( x, t, dp, 1 ) ) );

                    if ( coeffToString( t.c   ).slice( 0, s ) === ( n =
                         coeffToString( r.c ) ).slice( 0, s ) ) {

                        // The exponent of r may here be one less than the final result exponent,
                        // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits
                        // are indexed correctly.
                        if ( r.e < e ) --s;
                        n = n.slice( s - 3, s + 1 );

                        // The 4th rounding digit may be in error by -1 so if the 4 rounding digits
                        // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the
                        // iteration.
                        if ( n == '9999' || !rep && n == '4999' ) {

                            // On the first iteration only, check to see if rounding up gives the
                            // exact result as the nines may infinitely repeat.
                            if ( !rep ) {
                                round( t, t.e + DECIMAL_PLACES + 2, 0 );

                                if ( t.times(t).eq(x) ) {
                                    r = t;
                                    break;
                                }
                            }

                            dp += 4;
                            s += 4;
                            rep = 1;
                        } else {

                            // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact
                            // result. If not, then there are further digits and m will be truthy.
                            if ( !+n || !+n.slice(1) && n.charAt(0) == '5' ) {

                                // Truncate to the first rounding digit.
                                round( r, r.e + DECIMAL_PLACES + 2, 1 );
                                m = !r.times(r).eq(x);
                            }

                            break;
                        }
                    }
                }
            }

            return round( r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m );
        };


        /*
         *  n * 0 = 0
         *  n * N = N
         *  n * I = I
         *  0 * n = 0
         *  0 * 0 = 0
         *  0 * N = N
         *  0 * I = N
         *  N * n = N
         *  N * 0 = N
         *  N * N = N
         *  N * I = N
         *  I * n = I
         *  I * 0 = N
         *  I * N = N
         *  I * I = I
         *
         * Return a new BigNumber whose value is the value of this BigNumber times the value of
         * BigNumber(y, b).
         */
        P.times = P.mul = function ( y, b ) {
            var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc,
                base, sqrtBase,
                x = this,
                xc = x.c,
                yc = ( id = 17, y = new BigNumber( y, b ) ).c;

            // Either NaN, ±Infinity or ±0?
            if ( !xc || !yc || !xc[0] || !yc[0] ) {

                // Return NaN if either is NaN, or one is 0 and the other is Infinity.
                if ( !x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc ) {
                    y.c = y.e = y.s = null;
                } else {
                    y.s *= x.s;

                    // Return ±Infinity if either is ±Infinity.
                    if ( !xc || !yc ) {
                        y.c = y.e = null;

                    // Return ±0 if either is ±0.
                    } else {
                        y.c = [0];
                        y.e = 0;
                    }
                }

                return y;
            }

            e = bitFloor( x.e / LOG_BASE ) + bitFloor( y.e / LOG_BASE );
            y.s *= x.s;
            xcL = xc.length;
            ycL = yc.length;

            // Ensure xc points to longer array and xcL to its length.
            if ( xcL < ycL ) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i;

            // Initialise the result array with zeros.
            for ( i = xcL + ycL, zc = []; i--; zc.push(0) );

            base = BASE;
            sqrtBase = SQRT_BASE;

            for ( i = ycL; --i >= 0; ) {
                c = 0;
                ylo = yc[i] % sqrtBase;
                yhi = yc[i] / sqrtBase | 0;

                for ( k = xcL, j = i + k; j > i; ) {
                    xlo = xc[--k] % sqrtBase;
                    xhi = xc[k] / sqrtBase | 0;
                    m = yhi * xlo + xhi * ylo;
                    xlo = ylo * xlo + ( ( m % sqrtBase ) * sqrtBase ) + zc[j] + c;
                    c = ( xlo / base | 0 ) + ( m / sqrtBase | 0 ) + yhi * xhi;
                    zc[j--] = xlo % base;
                }

                zc[j] = c;
            }

            if (c) {
                ++e;
            } else {
                zc.splice(0, 1);
            }

            return normalise( y, zc, e );
        };


        /*
         * Return a new BigNumber whose value is the value of this BigNumber rounded to a maximum of
         * sd significant digits using rounding mode rm, or ROUNDING_MODE if rm is omitted.
         *
         * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
         * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
         *
         * 'toDigits() precision out of range: {sd}'
         * 'toDigits() precision not an integer: {sd}'
         * 'toDigits() rounding mode not an integer: {rm}'
         * 'toDigits() rounding mode out of range: {rm}'
         */
        P.toDigits = function ( sd, rm ) {
            var n = new BigNumber(this);
            sd = sd == null || !isValidInt( sd, 1, MAX, 18, 'precision' ) ? null : sd | 0;
            rm = rm == null || !isValidInt( rm, 0, 8, 18, roundingMode ) ? ROUNDING_MODE : rm | 0;
            return sd ? round( n, sd, rm ) : n;
        };


        /*
         * Return a string representing the value of this BigNumber in exponential notation and
         * rounded using ROUNDING_MODE to dp fixed decimal places.
         *
         * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
         * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
         *
         * 'toExponential() decimal places not an integer: {dp}'
         * 'toExponential() decimal places out of range: {dp}'
         * 'toExponential() rounding mode not an integer: {rm}'
         * 'toExponential() rounding mode out of range: {rm}'
         */
        P.toExponential = function ( dp, rm ) {
            return format( this,
              dp != null && isValidInt( dp, 0, MAX, 19 ) ? ~~dp + 1 : null, rm, 19 );
        };


        /*
         * Return a string representing the value of this BigNumber in fixed-point notation rounding
         * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted.
         *
         * Note: as with JavaScript's number type, (-0).toFixed(0) is '0',
         * but e.g. (-0.00001).toFixed(0) is '-0'.
         *
         * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
         * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
         *
         * 'toFixed() decimal places not an integer: {dp}'
         * 'toFixed() decimal places out of range: {dp}'
         * 'toFixed() rounding mode not an integer: {rm}'
         * 'toFixed() rounding mode out of range: {rm}'
         */
        P.toFixed = function ( dp, rm ) {
            return format( this, dp != null && isValidInt( dp, 0, MAX, 20 )
              ? ~~dp + this.e + 1 : null, rm, 20 );
        };


        /*
         * Return a string representing the value of this BigNumber in fixed-point notation rounded
         * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties
         * of the FORMAT object (see BigNumber.config).
         *
         * FORMAT = {
         *      decimalSeparator : '.',
         *      groupSeparator : ',',
         *      groupSize : 3,
         *      secondaryGroupSize : 0,
         *      fractionGroupSeparator : '\xA0',    // non-breaking space
         *      fractionGroupSize : 0
         * };
         *
         * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
         * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
         *
         * 'toFormat() decimal places not an integer: {dp}'
         * 'toFormat() decimal places out of range: {dp}'
         * 'toFormat() rounding mode not an integer: {rm}'
         * 'toFormat() rounding mode out of range: {rm}'
         */
        P.toFormat = function ( dp, rm ) {
            var str = format( this, dp != null && isValidInt( dp, 0, MAX, 21 )
              ? ~~dp + this.e + 1 : null, rm, 21 );

            if ( this.c ) {
                var i,
                    arr = str.split('.'),
                    g1 = +FORMAT.groupSize,
                    g2 = +FORMAT.secondaryGroupSize,
                    groupSeparator = FORMAT.groupSeparator,
                    intPart = arr[0],
                    fractionPart = arr[1],
                    isNeg = this.s < 0,
                    intDigits = isNeg ? intPart.slice(1) : intPart,
                    len = intDigits.length;

                if (g2) i = g1, g1 = g2, g2 = i, len -= i;

                if ( g1 > 0 && len > 0 ) {
                    i = len % g1 || g1;
                    intPart = intDigits.substr( 0, i );

                    for ( ; i < len; i += g1 ) {
                        intPart += groupSeparator + intDigits.substr( i, g1 );
                    }

                    if ( g2 > 0 ) intPart += groupSeparator + intDigits.slice(i);
                    if (isNeg) intPart = '-' + intPart;
                }

                str = fractionPart
                  ? intPart + FORMAT.decimalSeparator + ( ( g2 = +FORMAT.fractionGroupSize )
                    ? fractionPart.replace( new RegExp( '\\d{' + g2 + '}\\B', 'g' ),
                      '$&' + FORMAT.fractionGroupSeparator )
                    : fractionPart )
                  : intPart;
            }

            return str;
        };


        /*
         * Return a string array representing the value of this BigNumber as a simple fraction with
         * an integer numerator and an integer denominator. The denominator will be a positive
         * non-zero value less than or equal to the specified maximum denominator. If a maximum
         * denominator is not specified, the denominator will be the lowest value necessary to
         * represent the number exactly.
         *
         * [md] {number|string|BigNumber} Integer >= 1 and < Infinity. The maximum denominator.
         *
         * 'toFraction() max denominator not an integer: {md}'
         * 'toFraction() max denominator out of range: {md}'
         */
        P.toFraction = function (md) {
            var arr, d0, d2, e, exp, n, n0, q, s,
                k = ERRORS,
                x = this,
                xc = x.c,
                d = new BigNumber(ONE),
                n1 = d0 = new BigNumber(ONE),
                d1 = n0 = new BigNumber(ONE);

            if ( md != null ) {
                ERRORS = false;
                n = new BigNumber(md);
                ERRORS = k;

                if ( !( k = n.isInt() ) || n.lt(ONE) ) {

                    if (ERRORS) {
                        raise( 22,
                          'max denominator ' + ( k ? 'out of range' : 'not an integer' ), md );
                    }

                    // ERRORS is false:
                    // If md is a finite non-integer >= 1, round it to an integer and use it.
                    md = !k && n.c && round( n, n.e + 1, 1 ).gte(ONE) ? n : null;
                }
            }

            if ( !xc ) return x.toString();
            s = coeffToString(xc);

            // Determine initial denominator.
            // d is a power of 10 and the minimum max denominator that specifies the value exactly.
            e = d.e = s.length - x.e - 1;
            d.c[0] = POWS_TEN[ ( exp = e % LOG_BASE ) < 0 ? LOG_BASE + exp : exp ];
            md = !md || n.cmp(d) > 0 ? ( e > 0 ? d : n1 ) : n;

            exp = MAX_EXP;
            MAX_EXP = 1 / 0;
            n = new BigNumber(s);

            // n0 = d1 = 0
            n0.c[0] = 0;

            for ( ; ; )  {
                q = div( n, d, 0, 1 );
                d2 = d0.plus( q.times(d1) );
                if ( d2.cmp(md) == 1 ) break;
                d0 = d1;
                d1 = d2;
                n1 = n0.plus( q.times( d2 = n1 ) );
                n0 = d2;
                d = n.minus( q.times( d2 = d ) );
                n = d2;
            }

            d2 = div( md.minus(d0), d1, 0, 1 );
            n0 = n0.plus( d2.times(n1) );
            d0 = d0.plus( d2.times(d1) );
            n0.s = n1.s = x.s;
            e *= 2;

            // Determine which fraction is closer to x, n0/d0 or n1/d1
            arr = div( n1, d1, e, ROUNDING_MODE ).minus(x).abs().cmp(
                  div( n0, d0, e, ROUNDING_MODE ).minus(x).abs() ) < 1
                    ? [ n1.toString(), d1.toString() ]
                    : [ n0.toString(), d0.toString() ];

            MAX_EXP = exp;
            return arr;
        };


        /*
         * Return the value of this BigNumber converted to a number primitive.
         */
        P.toNumber = function () {
            return +this;
        };


        /*
         * Return a BigNumber whose value is the value of this BigNumber raised to the power n.
         * If m is present, return the result modulo m.
         * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE.
         * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using
         * ROUNDING_MODE.
         *
         * The modular power operation works efficiently when x, n, and m are positive integers,
         * otherwise it is equivalent to calculating x.toPower(n).modulo(m) (with POW_PRECISION 0).
         *
         * n {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
         * [m] {number|string|BigNumber} The modulus.
         *
         * 'pow() exponent not an integer: {n}'
         * 'pow() exponent out of range: {n}'
         *
         * Performs 54 loop iterations for n of 9007199254740991.
         */
        P.toPower = P.pow = function ( n, m ) {
            var k, y, z,
                i = mathfloor( n < 0 ? -n : +n ),
                x = this;

            if ( m != null ) {
                id = 23;
                m = new BigNumber(m);
            }

            // Pass ±Infinity to Math.pow if exponent is out of range.
            if ( !isValidInt( n, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER, 23, 'exponent' ) &&
              ( !isFinite(n) || i > MAX_SAFE_INTEGER && ( n /= 0 ) ||
                parseFloat(n) != n && !( n = NaN ) ) || n == 0 ) {
                k = Math.pow( +x, n );
                return new BigNumber( m ? k % m : k );
            }

            if (m) {
                if ( n > 1 && x.gt(ONE) && x.isInt() && m.gt(ONE) && m.isInt() ) {
                    x = x.mod(m);
                } else {
                    z = m;

                    // Nullify m so only a single mod operation is performed at the end.
                    m = null;
                }
            } else if (POW_PRECISION) {

                // Truncating each coefficient array to a length of k after each multiplication
                // equates to truncating significant digits to POW_PRECISION + [28, 41],
                // i.e. there will be a minimum of 28 guard digits retained.
                // (Using + 1.5 would give [9, 21] guard digits.)
                k = mathceil( POW_PRECISION / LOG_BASE + 2 );
            }

            y = new BigNumber(ONE);

            for ( ; ; ) {
                if ( i % 2 ) {
                    y = y.times(x);
                    if ( !y.c ) break;
                    if (k) {
                        if ( y.c.length > k ) y.c.length = k;
                    } else if (m) {
                        y = y.mod(m);
                    }
                }

                i = mathfloor( i / 2 );
                if ( !i ) break;
                x = x.times(x);
                if (k) {
                    if ( x.c && x.c.length > k ) x.c.length = k;
                } else if (m) {
                    x = x.mod(m);
                }
            }

            if (m) return y;
            if ( n < 0 ) y = ONE.div(y);

            return z ? y.mod(z) : k ? round( y, POW_PRECISION, ROUNDING_MODE ) : y;
        };


        /*
         * Return a string representing the value of this BigNumber rounded to sd significant digits
         * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits
         * necessary to represent the integer part of the value in fixed-point notation, then use
         * exponential notation.
         *
         * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
         * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
         *
         * 'toPrecision() precision not an integer: {sd}'
         * 'toPrecision() precision out of range: {sd}'
         * 'toPrecision() rounding mode not an integer: {rm}'
         * 'toPrecision() rounding mode out of range: {rm}'
         */
        P.toPrecision = function ( sd, rm ) {
            return format( this, sd != null && isValidInt( sd, 1, MAX, 24, 'precision' )
              ? sd | 0 : null, rm, 24 );
        };


        /*
         * Return a string representing the value of this BigNumber in base b, or base 10 if b is
         * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and
         * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent
         * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than
         * TO_EXP_NEG, return exponential notation.
         *
         * [b] {number} Integer, 2 to 64 inclusive.
         *
         * 'toString() base not an integer: {b}'
         * 'toString() base out of range: {b}'
         */
        P.toString = function (b) {
            var str,
                n = this,
                s = n.s,
                e = n.e;

            // Infinity or NaN?
            if ( e === null ) {

                if (s) {
                    str = 'Infinity';
                    if ( s < 0 ) str = '-' + str;
                } else {
                    str = 'NaN';
                }
            } else {
                str = coeffToString( n.c );

                if ( b == null || !isValidInt( b, 2, 64, 25, 'base' ) ) {
                    str = e <= TO_EXP_NEG || e >= TO_EXP_POS
                      ? toExponential( str, e )
                      : toFixedPoint( str, e );
                } else {
                    str = convertBase( toFixedPoint( str, e ), b | 0, 10, s );
                }

                if ( s < 0 && n.c[0] ) str = '-' + str;
            }

            return str;
        };


        /*
         * Return a new BigNumber whose value is the value of this BigNumber truncated to a whole
         * number.
         */
        P.truncated = P.trunc = function () {
            return round( new BigNumber(this), this.e + 1, 1 );
        };


        /*
         * Return as toString, but do not accept a base argument, and include the minus sign for
         * negative zero.
         */
        P.valueOf = P.toJSON = function () {
            var str,
                n = this,
                e = n.e;

            if ( e === null ) return n.toString();

            str = coeffToString( n.c );

            str = e <= TO_EXP_NEG || e >= TO_EXP_POS
                ? toExponential( str, e )
                : toFixedPoint( str, e );

            return n.s < 0 ? '-' + str : str;
        };


        P.isBigNumber = true;

        if ( config != null ) BigNumber.config(config);

        return BigNumber;
    }


    // PRIVATE HELPER FUNCTIONS


    function bitFloor(n) {
        var i = n | 0;
        return n > 0 || n === i ? i : i - 1;
    }


    // Return a coefficient array as a string of base 10 digits.
    function coeffToString(a) {
        var s, z,
            i = 1,
            j = a.length,
            r = a[0] + '';

        for ( ; i < j; ) {
            s = a[i++] + '';
            z = LOG_BASE - s.length;
            for ( ; z--; s = '0' + s );
            r += s;
        }

        // Determine trailing zeros.
        for ( j = r.length; r.charCodeAt(--j) === 48; );
        return r.slice( 0, j + 1 || 1 );
    }


    // Compare the value of BigNumbers x and y.
    function compare( x, y ) {
        var a, b,
            xc = x.c,
            yc = y.c,
            i = x.s,
            j = y.s,
            k = x.e,
            l = y.e;

        // Either NaN?
        if ( !i || !j ) return null;

        a = xc && !xc[0];
        b = yc && !yc[0];

        // Either zero?
        if ( a || b ) return a ? b ? 0 : -j : i;

        // Signs differ?
        if ( i != j ) return i;

        a = i < 0;
        b = k == l;

        // Either Infinity?
        if ( !xc || !yc ) return b ? 0 : !xc ^ a ? 1 : -1;

        // Compare exponents.
        if ( !b ) return k > l ^ a ? 1 : -1;

        j = ( k = xc.length ) < ( l = yc.length ) ? k : l;

        // Compare digit by digit.
        for ( i = 0; i < j; i++ ) if ( xc[i] != yc[i] ) return xc[i] > yc[i] ^ a ? 1 : -1;

        // Compare lengths.
        return k == l ? 0 : k > l ^ a ? 1 : -1;
    }


    /*
     * Return true if n is a valid number in range, otherwise false.
     * Use for argument validation when ERRORS is false.
     * Note: parseInt('1e+1') == 1 but parseFloat('1e+1') == 10.
     */
    function intValidatorNoErrors( n, min, max ) {
        return ( n = truncate(n) ) >= min && n <= max;
    }


    function isArray(obj) {
        return Object.prototype.toString.call(obj) == '[object Array]';
    }


    /*
     * Convert string of baseIn to an array of numbers of baseOut.
     * Eg. convertBase('255', 10, 16) returns [15, 15].
     * Eg. convertBase('ff', 16, 10) returns [2, 5, 5].
     */
    function toBaseOut( str, baseIn, baseOut ) {
        var j,
            arr = [0],
            arrL,
            i = 0,
            len = str.length;

        for ( ; i < len; ) {
            for ( arrL = arr.length; arrL--; arr[arrL] *= baseIn );
            arr[ j = 0 ] += ALPHABET.indexOf( str.charAt( i++ ) );

            for ( ; j < arr.length; j++ ) {

                if ( arr[j] > baseOut - 1 ) {
                    if ( arr[j + 1] == null ) arr[j + 1] = 0;
                    arr[j + 1] += arr[j] / baseOut | 0;
                    arr[j] %= baseOut;
                }
            }
        }

        return arr.reverse();
    }


    function toExponential( str, e ) {
        return ( str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str ) +
          ( e < 0 ? 'e' : 'e+' ) + e;
    }


    function toFixedPoint( str, e ) {
        var len, z;

        // Negative exponent?
        if ( e < 0 ) {

            // Prepend zeros.
            for ( z = '0.'; ++e; z += '0' );
            str = z + str;

        // Positive exponent
        } else {
            len = str.length;

            // Append zeros.
            if ( ++e > len ) {
                for ( z = '0', e -= len; --e; z += '0' );
                str += z;
            } else if ( e < len ) {
                str = str.slice( 0, e ) + '.' + str.slice(e);
            }
        }

        return str;
    }


    function truncate(n) {
        n = parseFloat(n);
        return n < 0 ? mathceil(n) : mathfloor(n);
    }


    // EXPORT


    BigNumber = constructorFactory();
    BigNumber['default'] = BigNumber.BigNumber = BigNumber;


    // AMD.
    if ( typeof define == 'function' && define.amd ) {
        define( function () { return BigNumber; } );

    // Node.js and other environments that support module.exports.
    } else if ( typeof module != 'undefined' && module.exports ) {
        module.exports = BigNumber;

    // Browser.
    } else {
        if ( !globalObj ) globalObj = typeof self != 'undefined' ? self : Function('return this')();
        globalObj.BigNumber = BigNumber;
    }
})(this);